661 lines
29 KiB
Rust
661 lines
29 KiB
Rust
// Spectral Compressor: an FFT based compressor
|
|
// Copyright (C) 2021-2022 Robbert van der Helm
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
use std::sync::atomic::{AtomicBool, Ordering};
|
|
use std::sync::Arc;
|
|
|
|
use nih_plug::prelude::*;
|
|
use realfft::num_complex::Complex32;
|
|
|
|
/// Type alias for the compressor parameters. These two are split up so the parameter list/tree
|
|
/// looks a bit nicer.
|
|
pub type CompressorParams<'a> = (&'a ThresholdParams, &'a CompressorBankParams);
|
|
|
|
/// A bank of compressors so each FFT bin can be compressed individually. The vectors in this struct
|
|
/// will have a capacity of `MAX_WINDOW_SIZE / 2 + 1` and a size that matches the current complex
|
|
/// FFT buffer size. This is stored as a struct of arrays to make SIMD-ing easier in the future.
|
|
pub struct CompressorBank {
|
|
/// If set, then the downwards thresholds should be updated on the next processing cycle. Can be
|
|
/// set from a parameter value change listener, and is also set when calling `.reset_for_size`.
|
|
pub should_update_downwards_thresholds: Arc<AtomicBool>,
|
|
/// The same as `should_update_downwards_thresholds`, but for upwards thresholds.
|
|
pub should_update_upwards_thresholds: Arc<AtomicBool>,
|
|
/// If set, then the downwards ratios should be updated on the next processing cycle. Can be set
|
|
/// from a parameter value change listener, and is also set when calling `.reset_for_size`.
|
|
pub should_update_downwards_ratios: Arc<AtomicBool>,
|
|
/// The same as `should_update_downwards_ratios`, but for upwards ratios.
|
|
pub should_update_upwards_ratios: Arc<AtomicBool>,
|
|
|
|
/// For each compressor bin, `log2(freq)` where `freq` is the frequency associated with that
|
|
/// compressor. This is precomputed since all update functions need it.
|
|
log2_freqs: Vec<f32>,
|
|
|
|
/// Downwards compressor thresholds, in linear space.
|
|
downwards_thresholds: Vec<f32>,
|
|
/// The reciprocals of the downwards compressor ratios. At 1.0 the cmopressor won't do anything.
|
|
/// If [`CompressorBankParams::high_freq_ratio_rolloff`] is set to 1.0, then this will be the
|
|
/// same for each compressor. We're doing the compression in linear space to avoid a logarithm,
|
|
/// so the division by the ratio becomes an nth-root, or exponentation by the reciprocal of the
|
|
/// ratio.
|
|
downwards_ratio_recips: Vec<f32>,
|
|
/// Upwards compressor thresholds, in linear space.
|
|
upwards_thresholds: Vec<f32>,
|
|
/// The same as `downwards_ratio_recipss`, but for the upwards compression.
|
|
upwards_ratio_recips: Vec<f32>,
|
|
|
|
/// The current envelope value for this bin, in linear space. Indexed by
|
|
/// `[channel_idx][compressor_idx]`.
|
|
envelopes: Vec<Vec<f32>>,
|
|
/// The window size this compressor bank was configured for. This is used to compute the
|
|
/// coefficients for the envelope followers in the process function.
|
|
window_size: usize,
|
|
/// The sample rate this compressor bank was configured for. This is used to compute the
|
|
/// coefficients for the envelope followers in the process function.
|
|
sample_rate: f32,
|
|
}
|
|
|
|
#[derive(Params)]
|
|
pub struct ThresholdParams {
|
|
// TODO: Sidechaining
|
|
/// The center frqeuency for the target curve when sidechaining is not enabled. The curve is a
|
|
/// polynomial `threshold_db + curve_slope*x + curve_curve*(x^2)` that evaluates to a decibel
|
|
/// value, where `x = log2(center_frequency) - log2(bin_frequency)`. In other words, this is
|
|
/// evaluated in the log/log domain for decibels and octaves.
|
|
#[id = "thresh_center_freq"]
|
|
center_frequency: FloatParam,
|
|
/// The slope for the curve, in the log/log domain. See the polynomial above.
|
|
#[id = "thresh_curve_slope"]
|
|
curve_slope: FloatParam,
|
|
/// The, uh, 'curve' for the curve, in the logarithmic domain. This is the third coefficient in
|
|
/// the quadratic polynomial and controls the parabolic behavior. Positive values turn the curve
|
|
/// into a v-shaped curve, while negative values attenuate everything outside of the center
|
|
/// frequency. See the polynomial above.
|
|
#[id = "thresh_curve_curve"]
|
|
curve_curve: FloatParam,
|
|
/// The compressor threshold at the center frequency. When sidechaining is enabled, the input
|
|
/// signal is gained by the inverse of this value. This replaces the input gain in the original
|
|
/// Spectral Compressor. In the polynomial above, this is the intercept.
|
|
#[id = "input_db"]
|
|
threshold_db: FloatParam,
|
|
}
|
|
|
|
#[derive(Params)]
|
|
pub struct CompressorBankParams {
|
|
// TODO: Target curve options
|
|
/// The downwards compression threshold relative to the target curve.
|
|
#[id = "thresh_down_off"]
|
|
downwards_threshold_offset_db: FloatParam,
|
|
/// The downwards compression ratio. At 1.0 the downwards compressor is disengaged.
|
|
#[id = "ratio_down"]
|
|
downwards_ratio: FloatParam,
|
|
/// The downwards compression knee width, in decibels.
|
|
#[id = "knee_down"]
|
|
downwards_knee_width_db: FloatParam,
|
|
|
|
/// The upwards compression threshold relative to the target curve.
|
|
#[id = "thresh_up_off"]
|
|
upwards_threshold_offset_db: FloatParam,
|
|
/// The upwards compression ratio. At 1.0 the upwards compressor is disengaged.
|
|
#[id = "ratio_up"]
|
|
upwards_ratio: FloatParam,
|
|
/// The upwards compression knee width, in decibels.
|
|
#[id = "knee_up"]
|
|
upwards_knee_width_db: FloatParam,
|
|
|
|
/// A `[0, 1]` scaling factor that causes the compressors for the higher registers to have lower
|
|
/// ratios than the compressors for the lower registers. The scaling is applied logarithmically
|
|
/// rather than linearly over the compressors. If this is set to 1.0, then the ratios will be
|
|
/// the same for every compressor.
|
|
///
|
|
/// TODO: Decide on whether or not this should only apply on upwards ratios, or if we may need
|
|
/// separate controls for both
|
|
#[id = "ratio_hi_freq_rolloff"]
|
|
high_freq_ratio_rolloff: FloatParam,
|
|
|
|
/// The compressor's attack time in milliseconds. Controls both upwards and downwards
|
|
/// compression.
|
|
#[id = "attack"]
|
|
compressor_attack_ms: FloatParam,
|
|
/// The compressor's release time in milliseconds. Controls both upwards and downwards
|
|
/// compression.
|
|
#[id = "release"]
|
|
compressor_release_ms: FloatParam,
|
|
}
|
|
|
|
impl ThresholdParams {
|
|
/// Create a new [`ThresholdParams`] object. Changing any of the threshold parameters causes the
|
|
/// passed compressor bank's thresholds to be updated.
|
|
pub fn new(compressor_bank: &CompressorBank) -> Self {
|
|
let should_update_downwards_thresholds =
|
|
compressor_bank.should_update_downwards_thresholds.clone();
|
|
let should_update_upwards_thresholds =
|
|
compressor_bank.should_update_upwards_thresholds.clone();
|
|
let set_update_both_thresholds = Arc::new(move |_| {
|
|
should_update_downwards_thresholds.store(true, Ordering::SeqCst);
|
|
should_update_upwards_thresholds.store(true, Ordering::SeqCst);
|
|
});
|
|
|
|
ThresholdParams {
|
|
center_frequency: FloatParam::new(
|
|
"Threshold Center",
|
|
500.0,
|
|
FloatRange::Skewed {
|
|
min: 20.0,
|
|
max: 20_000.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
},
|
|
)
|
|
.with_callback(set_update_both_thresholds.clone())
|
|
// This includes the unit
|
|
.with_value_to_string(formatters::v2s_f32_hz_then_khz(0))
|
|
.with_string_to_value(formatters::s2v_f32_hz_then_khz()),
|
|
// These are polynomial coefficients that are evaluated in the log/log domain
|
|
// (octaves/decibels). The global threshold is the intercept.
|
|
curve_slope: FloatParam::new(
|
|
"Threshold Slope",
|
|
0.0,
|
|
FloatRange::Linear {
|
|
min: -36.0,
|
|
max: 36.0,
|
|
},
|
|
)
|
|
.with_callback(set_update_both_thresholds.clone())
|
|
.with_unit(" dB/oct")
|
|
.with_step_size(0.1),
|
|
curve_curve: FloatParam::new(
|
|
"Threshold Curve",
|
|
0.0,
|
|
FloatRange::Linear {
|
|
min: -24.0,
|
|
max: 24.0,
|
|
},
|
|
)
|
|
.with_callback(set_update_both_thresholds.clone())
|
|
.with_unit(" dB/oct²")
|
|
.with_step_size(0.1),
|
|
threshold_db: FloatParam::new(
|
|
"Global Threshold",
|
|
0.0,
|
|
FloatRange::Linear {
|
|
min: -50.0,
|
|
max: 50.0,
|
|
},
|
|
)
|
|
.with_callback(set_update_both_thresholds)
|
|
.with_unit(" dB")
|
|
.with_step_size(0.1),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl CompressorBankParams {
|
|
/// Create a new [`CompressorBankParams`] object. Changing any of the threshold or ratio
|
|
/// parameters causes the passed compressor bank's parameters to be updated.
|
|
pub fn new(compressor_bank: &CompressorBank) -> Self {
|
|
let should_update_downwards_thresholds =
|
|
compressor_bank.should_update_downwards_thresholds.clone();
|
|
let set_update_downwards_thresholds =
|
|
Arc::new(move |_| should_update_downwards_thresholds.store(true, Ordering::SeqCst));
|
|
let should_update_upwards_thresholds =
|
|
compressor_bank.should_update_upwards_thresholds.clone();
|
|
let set_update_upwards_thresholds =
|
|
Arc::new(move |_| should_update_upwards_thresholds.store(true, Ordering::SeqCst));
|
|
let should_update_downwards_ratios = compressor_bank.should_update_downwards_ratios.clone();
|
|
let set_update_downwards_ratios =
|
|
Arc::new(move |_| should_update_downwards_ratios.store(true, Ordering::SeqCst));
|
|
let should_update_upwards_ratios = compressor_bank.should_update_upwards_ratios.clone();
|
|
let set_update_upwards_ratios =
|
|
Arc::new(move |_| should_update_upwards_ratios.store(true, Ordering::SeqCst));
|
|
|
|
let should_update_downwards_ratios = compressor_bank.should_update_downwards_ratios.clone();
|
|
let should_update_upwards_ratios = compressor_bank.should_update_upwards_ratios.clone();
|
|
let set_update_both_ratios = Arc::new(move |_| {
|
|
should_update_downwards_ratios.store(true, Ordering::SeqCst);
|
|
should_update_upwards_ratios.store(true, Ordering::SeqCst);
|
|
});
|
|
|
|
CompressorBankParams {
|
|
// TODO: Set nicer default values for these things
|
|
// As explained above, these offsets are relative to the target curve
|
|
downwards_threshold_offset_db: FloatParam::new(
|
|
"Downwards Offset",
|
|
0.0,
|
|
FloatRange::Linear {
|
|
min: -50.0,
|
|
max: 50.0,
|
|
},
|
|
)
|
|
.with_callback(set_update_downwards_thresholds)
|
|
.with_unit(" dB")
|
|
.with_step_size(0.1),
|
|
downwards_ratio: FloatParam::new(
|
|
"Downwards Ratio",
|
|
1.0,
|
|
FloatRange::Skewed {
|
|
min: 1.0,
|
|
max: 300.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
},
|
|
)
|
|
.with_callback(set_update_downwards_ratios)
|
|
.with_step_size(0.01)
|
|
.with_value_to_string(formatters::v2s_compression_ratio(2))
|
|
.with_string_to_value(formatters::s2v_compression_ratio()),
|
|
downwards_knee_width_db: FloatParam::new(
|
|
"Downwards Knee",
|
|
0.0,
|
|
FloatRange::Skewed {
|
|
min: 0.0,
|
|
max: 36.0,
|
|
factor: FloatRange::skew_factor(-1.0),
|
|
},
|
|
)
|
|
.with_unit(" dB")
|
|
.with_step_size(0.1),
|
|
|
|
upwards_threshold_offset_db: FloatParam::new(
|
|
"Upwards Offset",
|
|
0.0,
|
|
FloatRange::Linear {
|
|
min: -50.0,
|
|
max: 50.0,
|
|
},
|
|
)
|
|
.with_callback(set_update_upwards_thresholds)
|
|
.with_unit(" dB")
|
|
.with_step_size(0.1),
|
|
upwards_ratio: FloatParam::new(
|
|
"Upwards Ratio",
|
|
1.0,
|
|
FloatRange::Skewed {
|
|
min: 1.0,
|
|
max: 300.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
},
|
|
)
|
|
.with_callback(set_update_upwards_ratios)
|
|
.with_step_size(0.01)
|
|
.with_value_to_string(formatters::v2s_compression_ratio(2))
|
|
.with_string_to_value(formatters::s2v_compression_ratio()),
|
|
upwards_knee_width_db: FloatParam::new(
|
|
"Upwards Knee",
|
|
0.0,
|
|
FloatRange::Skewed {
|
|
min: 0.0,
|
|
max: 36.0,
|
|
factor: FloatRange::skew_factor(-1.0),
|
|
},
|
|
)
|
|
.with_unit(" dB")
|
|
.with_step_size(0.1),
|
|
|
|
high_freq_ratio_rolloff: FloatParam::new(
|
|
"High-freq Ratio Rolloff",
|
|
0.5,
|
|
FloatRange::Linear { min: 0.0, max: 1.0 },
|
|
)
|
|
.with_callback(set_update_both_ratios)
|
|
.with_unit("%")
|
|
.with_value_to_string(formatters::v2s_f32_percentage(0))
|
|
.with_string_to_value(formatters::s2v_f32_percentage()),
|
|
|
|
compressor_attack_ms: FloatParam::new(
|
|
"Attack",
|
|
150.0,
|
|
FloatRange::Skewed {
|
|
min: 0.0,
|
|
max: 10_000.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
},
|
|
)
|
|
.with_unit(" ms")
|
|
.with_step_size(0.1),
|
|
compressor_release_ms: FloatParam::new(
|
|
"Release",
|
|
300.0,
|
|
FloatRange::Skewed {
|
|
min: 0.0,
|
|
max: 10_000.0,
|
|
factor: FloatRange::skew_factor(-2.0),
|
|
},
|
|
)
|
|
.with_unit(" ms")
|
|
.with_step_size(0.1),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl CompressorBank {
|
|
/// Set up the compressor for the given channel count and maximum FFT window size. The
|
|
/// compressors won't be initialized yet.
|
|
pub fn new(num_channels: usize, max_window_size: usize) -> Self {
|
|
let complex_buffer_len = max_window_size / 2 + 1;
|
|
|
|
CompressorBank {
|
|
should_update_downwards_thresholds: Arc::new(AtomicBool::new(true)),
|
|
should_update_upwards_thresholds: Arc::new(AtomicBool::new(true)),
|
|
should_update_downwards_ratios: Arc::new(AtomicBool::new(true)),
|
|
should_update_upwards_ratios: Arc::new(AtomicBool::new(true)),
|
|
|
|
log2_freqs: Vec::with_capacity(complex_buffer_len),
|
|
|
|
downwards_thresholds: Vec::with_capacity(complex_buffer_len),
|
|
downwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
|
|
upwards_thresholds: Vec::with_capacity(complex_buffer_len),
|
|
upwards_ratio_recips: Vec::with_capacity(complex_buffer_len),
|
|
|
|
envelopes: vec![Vec::with_capacity(complex_buffer_len); num_channels],
|
|
window_size: 0,
|
|
sample_rate: 1.0,
|
|
}
|
|
}
|
|
|
|
/// Change the capacities of the internal buffers to fit new parameters. Use the
|
|
/// `.reset_for_size()` method to clear the buffers and set the current window size.
|
|
pub fn update_capacity(&mut self, num_channels: usize, max_window_size: usize) {
|
|
let complex_buffer_len = max_window_size / 2 + 1;
|
|
|
|
self.log2_freqs
|
|
.reserve_exact(complex_buffer_len.saturating_sub(self.log2_freqs.len()));
|
|
|
|
self.downwards_thresholds
|
|
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_thresholds.len()));
|
|
self.downwards_ratio_recips
|
|
.reserve_exact(complex_buffer_len.saturating_sub(self.downwards_ratio_recips.len()));
|
|
self.upwards_thresholds
|
|
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_thresholds.len()));
|
|
self.upwards_ratio_recips
|
|
.reserve_exact(complex_buffer_len.saturating_sub(self.upwards_ratio_recips.len()));
|
|
|
|
self.envelopes.resize_with(num_channels, Vec::new);
|
|
for envelopes in self.envelopes.iter_mut() {
|
|
envelopes.reserve_exact(complex_buffer_len.saturating_sub(envelopes.len()));
|
|
}
|
|
}
|
|
|
|
/// Resize the number of compressors to match the current window size. Also precomputes the
|
|
/// 2-log frequencies for each bin.
|
|
///
|
|
/// If the window size is larger than the maximum window size, then this will allocate.
|
|
pub fn resize(&mut self, buffer_config: &BufferConfig, window_size: usize) {
|
|
let complex_buffer_len = window_size / 2 + 1;
|
|
|
|
// These 2-log frequencies are needed when updating the compressor parameters, so we'll just
|
|
// precompute them to avoid having to repeat the same expensive computations all the time
|
|
self.log2_freqs.resize(complex_buffer_len, 0.0);
|
|
for (i, log2_freq) in self.log2_freqs.iter_mut().enumerate() {
|
|
let freq = (i as f32 / window_size as f32) * buffer_config.sample_rate;
|
|
*log2_freq = freq.log2();
|
|
}
|
|
|
|
self.downwards_thresholds.resize(complex_buffer_len, 1.0);
|
|
self.downwards_ratio_recips.resize(complex_buffer_len, 1.0);
|
|
self.upwards_thresholds.resize(complex_buffer_len, 1.0);
|
|
self.upwards_ratio_recips.resize(complex_buffer_len, 1.0);
|
|
|
|
for envelopes in self.envelopes.iter_mut() {
|
|
envelopes.resize(complex_buffer_len, 0.0);
|
|
}
|
|
|
|
self.window_size = window_size;
|
|
self.sample_rate = buffer_config.sample_rate;
|
|
|
|
// The compressors need to be updated on the next processing cycle
|
|
self.should_update_downwards_thresholds
|
|
.store(true, Ordering::SeqCst);
|
|
self.should_update_upwards_thresholds
|
|
.store(true, Ordering::SeqCst);
|
|
self.should_update_downwards_ratios
|
|
.store(true, Ordering::SeqCst);
|
|
self.should_update_upwards_ratios
|
|
.store(true, Ordering::SeqCst);
|
|
}
|
|
|
|
/// Clear out the envelope followers.
|
|
pub fn reset(&mut self) {
|
|
for envelopes in self.envelopes.iter_mut() {
|
|
envelopes.fill(0.0);
|
|
}
|
|
}
|
|
|
|
/// Apply the magnitude compression to a buffer of FFT bins. The compressors are first updated
|
|
/// if needed. The overlap amount is needed to compute the effective sample rate. The
|
|
/// `skip_bins_below` argument is used to avoid compressing DC bins, or the neighbouring bins
|
|
/// the DC signal may have been convolved into because of the Hann window function.
|
|
pub fn process(
|
|
&mut self,
|
|
buffer: &mut [Complex32],
|
|
channel_idx: usize,
|
|
params: CompressorParams,
|
|
overlap_times: usize,
|
|
skip_bins_below: usize,
|
|
) {
|
|
assert_eq!(buffer.len(), self.log2_freqs.len());
|
|
|
|
self.update_if_needed(params);
|
|
self.update_envelopes(buffer, channel_idx, params, overlap_times, skip_bins_below);
|
|
self.compress(buffer, channel_idx, params, skip_bins_below);
|
|
}
|
|
|
|
/// Update the envelope followers based on the bin magnetudes.
|
|
fn update_envelopes(
|
|
&mut self,
|
|
buffer: &mut [Complex32],
|
|
channel_idx: usize,
|
|
(_, compressor): CompressorParams,
|
|
overlap_times: usize,
|
|
skip_bins_below: usize,
|
|
) {
|
|
// The coefficient the old envelope value is multiplied by when the current rectified sample
|
|
// value is above the envelope's value. The 0 to 1 step response retains 36.8% of the old
|
|
// value after the attack time has elapsed, and current value is 63.2% of the way towards 1.
|
|
// The effective sample rate needs to compensate for the periodic nature of the STFT
|
|
// operation. Since with a 2048 sample window and 4x overlap, you'd run this function once
|
|
// for every 512 samples.
|
|
let effective_sample_rate =
|
|
self.sample_rate / (self.window_size as f32 / overlap_times as f32);
|
|
let attack_old_t = if compressor.compressor_attack_ms.value == 0.0 {
|
|
0.0
|
|
} else {
|
|
(-1.0 / (compressor.compressor_attack_ms.value / 1000.0 * effective_sample_rate)).exp()
|
|
};
|
|
let attack_new_t = 1.0 - attack_old_t;
|
|
// The same as `attack_old_t`, but for the release phase of the envelope follower
|
|
let release_old_t = if compressor.compressor_release_ms.value == 0.0 {
|
|
0.0
|
|
} else {
|
|
(-1.0 / (compressor.compressor_release_ms.value / 1000.0 * effective_sample_rate)).exp()
|
|
};
|
|
let release_new_t = 1.0 - release_old_t;
|
|
|
|
for (bin, envelope) in buffer
|
|
.iter()
|
|
.zip(self.envelopes[channel_idx].iter_mut())
|
|
.skip(skip_bins_below)
|
|
{
|
|
let magnitude = bin.norm();
|
|
if *envelope > magnitude {
|
|
// Release stage
|
|
*envelope = (release_old_t * *envelope) + (release_new_t * magnitude);
|
|
} else {
|
|
// Attack stage
|
|
*envelope = (attack_old_t * *envelope) + (attack_new_t * magnitude);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Actually do the thing. [`Self::update_envelopes()`] must have been called before calling
|
|
/// this.
|
|
fn compress(
|
|
&self,
|
|
buffer: &mut [Complex32],
|
|
channel_idx: usize,
|
|
(_, compressor): CompressorParams,
|
|
skip_bins_below: usize,
|
|
) {
|
|
// Well I'm not sure at all why this scaling works, but it does. With higher knee
|
|
// bandwidths, the middle values needs to be pushed more towards the post-knee threshold
|
|
// than with lower knee values.
|
|
let downwards_knee_scaling_factor =
|
|
((compressor.downwards_knee_width_db.value * 2.0) + 2.0).log2() - 1.0;
|
|
let upwards_knee_scaling_factor =
|
|
((compressor.upwards_knee_width_db.value * 2.0) + 2.0).log2() - 1.0;
|
|
|
|
// Is this what they mean by zip and and ship it?
|
|
let downwards_values = self
|
|
.downwards_thresholds
|
|
.iter()
|
|
.zip(self.downwards_ratio_recips.iter());
|
|
let upwards_values = self
|
|
.upwards_thresholds
|
|
.iter()
|
|
.zip(self.upwards_ratio_recips.iter());
|
|
for (
|
|
((bin, envelope), (downwards_threshold, downwards_ratio_recip)),
|
|
(upwards_threshold, upwards_ratio_recip),
|
|
) in buffer
|
|
.iter_mut()
|
|
.zip(self.envelopes[channel_idx].iter())
|
|
.zip(downwards_values)
|
|
.zip(upwards_values)
|
|
.skip(skip_bins_below)
|
|
{
|
|
// This works by computing a scaling factor, and then scaling the bin magnitudes by that.
|
|
let mut scale = 1.0;
|
|
|
|
// All compression happens in the linear domain to save a logarithm
|
|
if *downwards_ratio_recip != 1.0 {
|
|
// TODO: We need the knee starts and ends on this struct
|
|
// TODO: As mentioned above, soft knee, replace the threshold
|
|
if envelope > downwards_threshold {
|
|
// Because we're working in the linear domain, we care about the ratio between
|
|
// the threshold and the envelope's current value. And log-space division
|
|
// becomes linear-space exponentiation by the reciprocal, or taking the nth
|
|
// root.
|
|
let threshold_ratio = *envelope / *downwards_threshold;
|
|
scale /= threshold_ratio / threshold_ratio.powf(*downwards_ratio_recip);
|
|
}
|
|
}
|
|
|
|
// TODO: More stuff
|
|
// TODO: Upwards compression
|
|
|
|
*bin *= scale;
|
|
}
|
|
}
|
|
|
|
/// Update the compressors if needed. This is called just before processing, and the compressors
|
|
/// are updated in accordance to the atomic flags set on this struct.
|
|
fn update_if_needed(&mut self, (threshold, compressor): CompressorParams) {
|
|
// The threshold curve is a polynomial in log-log (decibels-octaves) space. The reuslt from
|
|
// evaluating this needs to be converted to linear gain for the compressors.
|
|
let intercept = threshold.threshold_db.value;
|
|
// The cheeky 3 additional dB/octave attenuation is to match pink noise with the default
|
|
// settings
|
|
let slope = threshold.curve_slope.value - 3.0;
|
|
let curve = threshold.curve_curve.value;
|
|
let log2_center_freq = threshold.center_frequency.value.log2();
|
|
|
|
let high_freq_ratio_rolloff = compressor.high_freq_ratio_rolloff.value;
|
|
let log2_nyquist_freq = self
|
|
.log2_freqs
|
|
.last()
|
|
.expect("The CompressorBank has not yet been resized");
|
|
|
|
if self
|
|
.should_update_downwards_thresholds
|
|
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
|
|
.is_ok()
|
|
{
|
|
let intercept = intercept + compressor.downwards_threshold_offset_db.value;
|
|
for (log2_freq, threshold) in self
|
|
.log2_freqs
|
|
.iter()
|
|
.zip(self.downwards_thresholds.iter_mut())
|
|
{
|
|
let offset = log2_freq - log2_center_freq;
|
|
let threshold_db = intercept + (slope * offset) + (curve * offset * offset);
|
|
// This threshold may never reach zero as it's used in divisions to get a gain ratio
|
|
// above the threshold
|
|
*threshold = util::db_to_gain(threshold_db).max(f32::EPSILON);
|
|
}
|
|
}
|
|
|
|
if self
|
|
.should_update_upwards_thresholds
|
|
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
|
|
.is_ok()
|
|
{
|
|
let intercept = intercept + compressor.upwards_threshold_offset_db.value;
|
|
for (log2_freq, threshold) in self
|
|
.log2_freqs
|
|
.iter()
|
|
.zip(self.upwards_thresholds.iter_mut())
|
|
{
|
|
let offset = log2_freq - log2_center_freq;
|
|
let threshold_db = intercept + (slope * offset) + (curve * offset * offset);
|
|
*threshold = util::db_to_gain(threshold_db).max(f32::EPSILON);
|
|
}
|
|
}
|
|
|
|
if self
|
|
.should_update_downwards_ratios
|
|
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
|
|
.is_ok()
|
|
{
|
|
// If the high-frequency rolloff is enabled then higher frequency bins will have their
|
|
// ratios reduced to reduce harshness. This follows the octave scale.
|
|
let target_ratio_recip = compressor.downwards_ratio.value.recip();
|
|
if high_freq_ratio_rolloff == 0.0 {
|
|
self.downwards_ratio_recips.fill(target_ratio_recip);
|
|
} else {
|
|
for (log2_freq, ratio) in self
|
|
.log2_freqs
|
|
.iter()
|
|
.zip(self.downwards_ratio_recips.iter_mut())
|
|
{
|
|
let octave_fraction = log2_freq / log2_nyquist_freq;
|
|
let rolloff_t = octave_fraction * high_freq_ratio_rolloff;
|
|
// If the octave fraction times the rolloff amount is high, then this should get
|
|
// closer to `high_freq_ratio_rolloff` (which is in [0, 1]).
|
|
*ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t;
|
|
}
|
|
}
|
|
}
|
|
|
|
if self
|
|
.should_update_upwards_ratios
|
|
.compare_exchange(true, false, Ordering::SeqCst, Ordering::SeqCst)
|
|
.is_ok()
|
|
{
|
|
let target_ratio_recip = compressor.upwards_ratio.value.recip();
|
|
if high_freq_ratio_rolloff == 0.0 {
|
|
self.upwards_ratio_recips.fill(target_ratio_recip);
|
|
} else {
|
|
for (log2_freq, ratio) in self
|
|
.log2_freqs
|
|
.iter()
|
|
.zip(self.upwards_ratio_recips.iter_mut())
|
|
{
|
|
let octave_fraction = log2_freq / log2_nyquist_freq;
|
|
let rolloff_t = octave_fraction * high_freq_ratio_rolloff;
|
|
*ratio = (target_ratio_recip * (1.0 - rolloff_t)) + rolloff_t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|