1
0
Fork 0
nih-plug/nih_plug_xtask/src/lib.rs
2022-09-15 13:28:26 +02:00

758 lines
30 KiB
Rust

use anyhow::Context;
use serde::Deserialize;
use std::collections::HashMap;
use std::fs;
use std::path::{Path, PathBuf};
use std::process::Command;
#[cfg(unix)]
use std::os::unix::fs::PermissionsExt;
mod symbols;
mod util;
/// Re-export for the main function.
pub use anyhow::Result;
/// The base birectory for the bundler's output.
const BUNDLE_HOME: &str = "target/bundled";
fn build_usage_string(command_name: &str) -> String {
format!(
"Usage:
{command_name} bundle <package> [--release]
{command_name} bundle -p <package1> -p <package2> ... [--release]
{command_name} bundle-universal <package> [--release] (macOS only)
{command_name} bundle-universal -p <package1> -p <package2> ... [--release] (macOS only)
All other 'cargo build' options are supported, including '--target' and '--profile'."
)
}
/// Any additional configuration that might be useful for creating plugin bundles, stored as
/// `bundler.toml` alongside the workspace's main `Cargo.toml` file.
type BundlerConfig = HashMap<String, PackageConfig>;
#[derive(Debug, Clone, Deserialize)]
struct PackageConfig {
name: Option<String>,
}
/// The target we're generating a plugin for. This can be either the native target or a cross
/// compilation target, so to reduce redundancy when determining the correct bundle paths we'll use
/// an enum for this.
#[derive(Debug, Clone, Copy)]
pub enum CompilationTarget {
Linux(Architecture),
MacOS(Architecture),
/// A special case for lipo'd `x86_64-apple-darwin` and `aarch64-apple-darwin` builds.
MacOSUniversal,
Windows(Architecture),
}
#[derive(Debug, Clone, Copy)]
pub enum Architecture {
X86,
X86_64,
// There are also a ton of different 32-bit ARM architectures, we'll just pretend they don't
// exist for now
AArch64,
}
/// The type of a MacOS bundle.
#[derive(Debug, Clone, Copy)]
pub enum BundleType {
Plugin,
Binary,
}
/// The main xtask entry point function. See the readme for instructions on how to use this.
pub fn main() -> Result<()> {
let args = std::env::args().skip(1);
main_with_args("cargo xtask", args)
}
/// The main xtask entry point function, but with custom command line arguments. `args` should not
/// contain the command name, so you should always skip at least one argument from
/// `std::env::args()` before passing it to this function.
pub fn main_with_args(command_name: &str, args: impl IntoIterator<Item = String>) -> Result<()> {
chdir_workspace_root()?;
let mut args = args.into_iter();
let usage_string = build_usage_string(command_name);
let command = args
.next()
.with_context(|| format!("Missing command name\n\n{usage_string}",))?;
match command.as_str() {
"bundle" => {
// For convenience's sake we'll allow building multiple packages with `-p` just like
// carg obuild, but you can also build a single package without specifying `-p`. Since
// multiple packages can be built in parallel if we pass all of these flags to a single
// `cargo build` we'll first build all of these packages and only then bundle them.
let (packages, other_args) = split_bundle_args(args, &usage_string)?;
// As explained above, for efficiency's sake this is a two step process
build(&packages, &other_args)?;
bundle(&packages[0], &other_args, false)?;
for package in packages.into_iter().skip(1) {
bundle(&package, &other_args, false)?;
}
Ok(())
}
"bundle-universal" => {
// The same as `--bundle`, but builds universal binaries for macOS Cargo will also error
// out on duplicate `--target` options, but it seems like a good idea to preemptively
// abort the bundling process if that happens
let (packages, other_args) = split_bundle_args(args, &usage_string)?;
for arg in &other_args {
if arg == "--target" || arg.starts_with("--target=") {
anyhow::bail!(
"'{command_name} xtask bundle-universal' is incompatible with the '{arg}' \
option."
)
}
}
// We can just use the regular build function here. There's sadly no way to build both
// targets in parallel, so this will likely take twice as logn as a regular build.
// TODO: Explicitly specifying the target even on the native target causes a rebuild in
// the target `target/<target_triple>` directory. This makes bundling much simpler
// because there's no conditional logic required based on the current platform,
// but it does waste some resources and requires a rebuild if the native target
// was already built.
let mut x86_64_args = other_args.clone();
x86_64_args.push(String::from("--target=x86_64-apple-darwin"));
build(&packages, &x86_64_args)?;
let mut aarch64_args = other_args.clone();
aarch64_args.push(String::from("--target=aarch64-apple-darwin"));
build(&packages, &aarch64_args)?;
// This `true` indicates a universal build. This will cause the two sets of built
// binaries to beq lipo'd together into universal binaries before bundling
bundle(&packages[0], &other_args, true)?;
for package in packages.into_iter().skip(1) {
bundle(&package, &other_args, true)?;
}
Ok(())
}
// This is only meant to be used by the CI, since using awk for this can be a bit spotty on
// macOS
"known-packages" => list_known_packages(),
_ => anyhow::bail!("Unknown command '{command}'\n\n{usage_string}"),
}
}
/// Change the current directory into the Cargo workspace's root.
///
/// This is using a heuristic to find the workspace root, walking up directories
/// from `CARGO_MANIFEST_DIR` until another `Cargo.toml` is found, and assuming
/// that is the active workspace.
pub fn chdir_workspace_root() -> Result<()> {
let xtask_project_dir = std::env::var("CARGO_MANIFEST_DIR")
.context("'$CARGO_MANIFEST_DIR' was not set, are you running this binary directly?")?;
let workspace_root = Path::new(&xtask_project_dir).parent().context(
"'$CARGO_MANIFEST_DIR' has an unexpected value, are you running this binary directly?",
)?;
// If `workspace_root` is not actually the workspace's root because this xtask binary's `Cargo.toml`
// file is in a sub-subdirectory, then we'll walk up the directory stack until we hopefully find
// it.
let workspace_root = if workspace_root.join("Cargo.toml").exists() {
workspace_root
} else {
let mut workspace_root_candidate = workspace_root;
loop {
workspace_root_candidate = workspace_root_candidate
.parent()
.context("Reached the file system root without finding a parent Cargo.toml file")?;
if workspace_root_candidate.join("Cargo.toml").exists() {
break workspace_root_candidate;
}
}
};
std::env::set_current_dir(workspace_root)
.context("Could not change to workspace root directory")
}
/// Build one or more packages using the provided `cargo build` arguments. This should be caleld
/// before callingq [`bundle()`]. This requires the current working directory to have been set to
/// the workspace's root using [`chdir_workspace_root()`].
pub fn build(packages: &[String], args: &[String]) -> Result<()> {
let package_args = packages.iter().flat_map(|package| ["-p", package]);
let status = Command::new("cargo")
.arg("build")
.args(package_args)
.args(args)
.status()
.with_context(|| format!("Could not call cargo to build {}", packages.join(", ")))?;
if !status.success() {
anyhow::bail!("Could not build {}", packages.join(", "));
} else {
Ok(())
}
}
/// Bundle a package that was previously built by a call to [`build()`] using the provided `cargo
/// build` arguments. These two functions are split up because building can be done in parallel by
/// Cargo itself while bundling is sequential. Options from the `bundler.toml` file in the
/// workspace's root are respected (see
/// <https://github.com/robbert-vdh/nih-plug/blob/master/bundler.toml>). This requires the current
/// working directory to have been set to the workspace's root using [`chdir_workspace_root()`].
///
/// If the package also exposes a binary target in addition to a library (or just a binary, in case
/// the binary target has a different name) then this will also be copied into the `bundled`
/// directory.
///
/// Normally this respects the `--target` option for cross compilation. If the `universal` option is
/// specified instead, then this will assume both `x86_64-apple-darwin` and `aarch64-apple-darwin`
/// have been built and it will try to lipo those together instead.
pub fn bundle(package: &str, args: &[String], universal: bool) -> Result<()> {
let mut build_type_dir = "debug";
let mut cross_compile_target: Option<String> = None;
for arg_idx in (0..args.len()).rev() {
let arg = &args[arg_idx];
match arg.as_str() {
"--profile" => {
// Since Rust 1.57 you can have custom profiles
build_type_dir = args.get(arg_idx + 1).context("Missing profile name")?;
}
"--release" => build_type_dir = "release",
"--target" => {
// When cross compiling we should generate the correct bundle type
cross_compile_target = Some(
args.get(arg_idx + 1)
.context("Missing cross-compile target")?
.to_owned(),
);
}
arg if arg.starts_with("--profile=") => {
build_type_dir = arg
.strip_prefix("--profile=")
.context("Missing profile name")?;
}
arg if arg.starts_with("--target=") => {
cross_compile_target = Some(
arg.strip_prefix("--target=")
.context("Missing cross-compile target")?
.to_owned(),
);
}
_ => (),
}
}
// We can bundle both library targets (for plugins) and binary targets (for standalone
// applications)
if universal {
let x86_64_target_base = target_base(Some("x86_64-apple-darwin"))?.join(build_type_dir);
let x86_64_bin_path = x86_64_target_base.join(binary_basename(
package,
CompilationTarget::MacOS(Architecture::X86_64),
));
let x86_64_lib_path = x86_64_target_base.join(library_basename(
package,
CompilationTarget::MacOS(Architecture::X86_64),
));
let aarch64_target_base = target_base(Some("aarch64-apple-darwin"))?.join(build_type_dir);
let aarch64_bin_path = aarch64_target_base.join(binary_basename(
package,
CompilationTarget::MacOS(Architecture::AArch64),
));
let aarch64_lib_path = aarch64_target_base.join(library_basename(
package,
CompilationTarget::MacOS(Architecture::AArch64),
));
let build_bin = x86_64_bin_path.exists() && aarch64_bin_path.exists();
let build_lib = x86_64_lib_path.exists() && aarch64_lib_path.exists();
if !build_bin && !build_lib {
anyhow::bail!("Could not find built libraries for universal build.");
}
eprintln!();
if build_bin {
bundle_binary(
package,
&[&x86_64_bin_path, &aarch64_bin_path],
CompilationTarget::MacOSUniversal,
)?;
}
if build_lib {
bundle_plugin(
package,
&[&x86_64_lib_path, &aarch64_lib_path],
CompilationTarget::MacOSUniversal,
)?;
}
} else {
let compilation_target = compilation_target(cross_compile_target.as_deref())?;
let target_base = target_base(cross_compile_target.as_deref())?.join(build_type_dir);
let bin_path = target_base.join(binary_basename(package, compilation_target));
let lib_path = target_base.join(library_basename(package, compilation_target));
if !bin_path.exists() && !lib_path.exists() {
anyhow::bail!("Could not find built library at '{}'", lib_path.display());
}
eprintln!();
if bin_path.exists() {
bundle_binary(package, &[&bin_path], compilation_target)?;
}
if lib_path.exists() {
bundle_plugin(package, &[&lib_path], compilation_target)?;
}
}
Ok(())
}
/// Bundle a standalone target. If `bin_path` contains more than one path, then the binaries will be
/// combined into a single binary using a method that depends on the compiilation target. For
/// universal macOS builds this uses lipo.
fn bundle_binary(
package: &str,
bin_paths: &[&Path],
compilation_target: CompilationTarget,
) -> Result<()> {
let bundle_name = match load_bundler_config()?.and_then(|c| c.get(package).cloned()) {
Some(PackageConfig { name: Some(name) }) => name,
_ => package.to_string(),
};
// On MacOS the standalone target needs to be in a bundle
let standalone_bundle_binary_name =
standalone_bundle_binary_name(&bundle_name, compilation_target);
let standalone_binary_path = Path::new(BUNDLE_HOME).join(&standalone_bundle_binary_name);
fs::create_dir_all(standalone_binary_path.parent().unwrap())
.context("Could not create standalone bundle directory")?;
util::reflink_or_combine(bin_paths, &standalone_binary_path, compilation_target)
.context("Could not create standaloen bundle")?;
// FIXME: The reflink crate seems to sometime strip away the executable bit, so we need to help
// it a little here
#[cfg(unix)]
if let Ok(metadata) = fs::metadata(&standalone_binary_path) {
// These are the executable bits
let mut permissions = metadata.permissions();
permissions.set_mode(permissions.mode() | 0b0001001001);
fs::set_permissions(&standalone_binary_path, permissions).with_context(|| {
format!(
"Could not make '{}' executable",
standalone_binary_path.display()
)
})?;
}
let standalone_bundle_home = Path::new(BUNDLE_HOME).join(
Path::new(&standalone_bundle_binary_name)
.components()
.next()
.expect("Malformed standalone binary path"),
);
maybe_create_macos_bundle_metadata(
package,
&bundle_name,
&standalone_bundle_home,
compilation_target,
BundleType::Binary,
)?;
eprintln!(
"Created a standalone bundle at '{}'",
standalone_bundle_home.display()
);
Ok(())
}
/// Bundle all plugin targets for a plugin library. If `lib_path` contains more than one path, then
/// the libraries will be combined into a single library using a method that depends on the
/// compiilation target. For universal macOS builds this uses lipo.
fn bundle_plugin(
package: &str,
lib_paths: &[&Path],
compilation_target: CompilationTarget,
) -> Result<()> {
let bundle_name = match load_bundler_config()?.and_then(|c| c.get(package).cloned()) {
Some(PackageConfig { name: Some(name) }) => name,
_ => package.to_string(),
};
// We'll detect the pugin formats supported by the plugin binary and create bundled accordingly.
// If `lib_path` contains paths to multiple plugins that need to be comined into a macOS
// universal binary, then we'll assume all of them export the same symbols and only check the
// first one.
let first_lib_path = lib_paths.first().context("Empty library paths slice")?;
let bundle_clap = symbols::exported(&first_lib_path, "clap_entry")
.with_context(|| format!("Could not parse '{}'", first_lib_path.display()))?;
// We'll ignore the platofrm-specific entry points for VST2 plugins since there's no reason to
// create a new Rust VST2 plugin that doesn't work in modern DAWs
// NOTE: NIH-plug does not support VST2, but we'll support bundling VST2 plugins anyways because
// this bundler can also be used standalone.
let bundle_vst2 = symbols::exported(&first_lib_path, "VSTPluginMain")
.with_context(|| format!("Could not parse '{}'", first_lib_path.display()))?;
let bundle_vst3 = symbols::exported(&first_lib_path, "GetPluginFactory")
.with_context(|| format!("Could not parse '{}'", first_lib_path.display()))?;
let bundled_plugin = bundle_clap || bundle_vst2 || bundle_vst3;
if bundle_clap {
let clap_bundle_library_name = clap_bundle_library_name(&bundle_name, compilation_target);
let clap_lib_path = Path::new(BUNDLE_HOME).join(&clap_bundle_library_name);
fs::create_dir_all(clap_lib_path.parent().unwrap())
.context("Could not create CLAP bundle directory")?;
util::reflink_or_combine(lib_paths, &clap_lib_path, compilation_target)
.context("Could not create CLAP bundle")?;
// In contrast to VST3, CLAP only uses bundles on macOS, so we'll just take the first
// component of the library name instead
let clap_bundle_home = Path::new(BUNDLE_HOME).join(
Path::new(&clap_bundle_library_name)
.components()
.next()
.expect("Malformed CLAP library path"),
);
maybe_create_macos_bundle_metadata(
package,
&bundle_name,
&clap_bundle_home,
compilation_target,
BundleType::Plugin,
)?;
eprintln!("Created a CLAP bundle at '{}'", clap_bundle_home.display());
}
if bundle_vst2 {
let vst2_bundle_library_name = vst2_bundle_library_name(&bundle_name, compilation_target);
let vst2_lib_path = Path::new(BUNDLE_HOME).join(&vst2_bundle_library_name);
fs::create_dir_all(vst2_lib_path.parent().unwrap())
.context("Could not create VST2 bundle directory")?;
util::reflink_or_combine(lib_paths, &vst2_lib_path, compilation_target)
.context("Could not create VST2 bundle")?;
// VST2 only uses bundles on macOS, so we'll just take the first component of the library
// name instead
let vst2_bundle_home = Path::new(BUNDLE_HOME).join(
Path::new(&vst2_bundle_library_name)
.components()
.next()
.expect("Malformed VST2 library path"),
);
maybe_create_macos_bundle_metadata(
package,
&bundle_name,
&vst2_bundle_home,
compilation_target,
BundleType::Plugin,
)?;
eprintln!("Created a VST2 bundle at '{}'", vst2_bundle_home.display());
}
if bundle_vst3 {
let vst3_lib_path =
Path::new(BUNDLE_HOME).join(vst3_bundle_library_name(&bundle_name, compilation_target));
fs::create_dir_all(vst3_lib_path.parent().unwrap())
.context("Could not create VST3 bundle directory")?;
util::reflink_or_combine(lib_paths, &vst3_lib_path, compilation_target)
.context("Could not create VST3 bundle")?;
let vst3_bundle_home = vst3_lib_path
.parent()
.unwrap()
.parent()
.unwrap()
.parent()
.unwrap();
maybe_create_macos_bundle_metadata(
package,
&bundle_name,
vst3_bundle_home,
compilation_target,
BundleType::Plugin,
)?;
eprintln!("Created a VST3 bundle at '{}'", vst3_bundle_home.display());
}
if !bundled_plugin {
eprintln!("Not creating any plugin bundles because the package does not export any plugins")
}
Ok(())
}
/// This lists the packages configured in `bundler.toml`. This is only used as part of the CI when
/// bundling plugins.
pub fn list_known_packages() -> Result<()> {
if let Some(config) = load_bundler_config()? {
for package in config.keys() {
println!("{package}");
}
}
Ok(())
}
/// Load the `bundler.toml` file, if it exists. If it does exist but it cannot be parsed, then this
/// will return an error.
fn load_bundler_config() -> Result<Option<BundlerConfig>> {
// We're already in the project root
let bundler_config_path = Path::new("bundler.toml");
if !bundler_config_path.exists() {
return Ok(None);
}
let result = toml::from_str(
&fs::read_to_string(&bundler_config_path)
.with_context(|| format!("Could not read '{}'", bundler_config_path.display()))?,
)
.with_context(|| format!("Could not parse '{}'", bundler_config_path.display()))?;
Ok(Some(result))
}
/// Split the `xtask bundle` arguments into a list of packages and a list of other arguments. The
/// package vector either contains just the first argument, or if the arguments iterator starts with
/// one or more occurences of `-p <package>` then this will contain all those packages.
fn split_bundle_args(
args: impl Iterator<Item = String>,
usage_string: &str,
) -> Result<(Vec<String>, Vec<String>)> {
let mut args = args.peekable();
let mut packages = Vec::new();
if args.peek().map(|s| s.as_str()) == Some("-p") {
while args.peek().map(|s| s.as_str()) == Some("-p") {
packages.push(
args.nth(1)
.with_context(|| format!("Missing package name after -p\n\n{usage_string}"))?,
);
}
} else {
packages.push(
args.next()
.with_context(|| format!("Missing package name\n\n{usage_string}"))?,
);
};
let other_args: Vec<_> = args.collect();
Ok((packages, other_args))
}
/// The target we're compiling for. This is used to determine the paths and options for creating
/// plugin bundles.
fn compilation_target(cross_compile_target: Option<&str>) -> Result<CompilationTarget> {
match cross_compile_target {
Some("i686-unknown-linux-gnu") => Ok(CompilationTarget::Linux(Architecture::X86)),
Some("i686-apple-darwin") => Ok(CompilationTarget::MacOS(Architecture::X86)),
Some("i686-pc-windows-gnu") | Some("i686-pc-windows-msvc") => {
Ok(CompilationTarget::Windows(Architecture::X86))
}
Some("x86_64-unknown-linux-gnu") => Ok(CompilationTarget::Linux(Architecture::X86_64)),
Some("x86_64-apple-darwin") => Ok(CompilationTarget::MacOS(Architecture::X86_64)),
Some("x86_64-pc-windows-gnu") | Some("x86_64-pc-windows-msvc") => {
Ok(CompilationTarget::Windows(Architecture::X86_64))
}
Some("aarch64-unknown-linux-gnu") => Ok(CompilationTarget::Linux(Architecture::AArch64)),
Some("aarch64-apple-darwin") => Ok(CompilationTarget::MacOS(Architecture::AArch64)),
Some("aarch64-pc-windows-gnu") | Some("aarch64-pc-windows-msvc") => {
Ok(CompilationTarget::Windows(Architecture::AArch64))
}
Some(target) => anyhow::bail!("Unhandled cross-compilation target: {}", target),
None => {
#[cfg(target_arch = "x86")]
let architecture = Architecture::X86;
#[cfg(target_arch = "x86_64")]
let architecture = Architecture::X86_64;
#[cfg(target_arch = "aarch64")]
let architecture = Architecture::AArch64;
#[cfg(target_os = "linux")]
return Ok(CompilationTarget::Linux(architecture));
#[cfg(target_os = "macos")]
return Ok(CompilationTarget::MacOS(architecture));
#[cfg(target_os = "windows")]
return Ok(CompilationTarget::Windows(architecture));
}
}
}
/// The base directory for the compiled binaries. This does not use [`CompilationTarget`] as we need
/// to be able to differentiate between native and cross-compilation.
fn target_base(cross_compile_target: Option<&str>) -> Result<PathBuf> {
match cross_compile_target {
// Unhandled targets will already be handled in `compilation_target`
Some(target) => Ok(Path::new("target").join(target)),
None => Ok(PathBuf::from("target")),
}
}
/// The file name of the compiled library for a binary crate.
fn binary_basename(package: &str, target: CompilationTarget) -> String {
// Cargo will replace dashes with underscores
let bin_name = package.replace('-', "_");
match target {
CompilationTarget::Linux(_)
| CompilationTarget::MacOS(_)
| CompilationTarget::MacOSUniversal => bin_name,
CompilationTarget::Windows(_) => format!("{bin_name}.exe"),
}
}
/// The file name of the compiled library for a `cdylib` crate.
fn library_basename(package: &str, target: CompilationTarget) -> String {
// Cargo will replace dashes with underscores
let lib_name = package.replace('-', "_");
match target {
CompilationTarget::Linux(_) => format!("lib{lib_name}.so"),
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal => {
format!("lib{lib_name}.dylib")
}
CompilationTarget::Windows(_) => format!("{lib_name}.dll"),
}
}
/// The filename of the binary target. On macOS this is part of a bundle.
fn standalone_bundle_binary_name(package: &str, target: CompilationTarget) -> String {
match target {
CompilationTarget::Linux(_) => package.to_owned(),
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal => {
format!("{package}.app/Contents/MacOS/{package}")
}
CompilationTarget::Windows(_) => format!("{package}.exe"),
}
}
/// The filename of the CLAP plugin for Linux and Windows, or the full path to the library file
/// inside of a CLAP bundle on macOS.
fn clap_bundle_library_name(package: &str, target: CompilationTarget) -> String {
match target {
CompilationTarget::Linux(_) | CompilationTarget::Windows(_) => format!("{package}.clap"),
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal => {
format!("{package}.clap/Contents/MacOS/{package}")
}
}
}
/// On Linux and Windows VST2 plugins are regular library files, and on macOS they are put in a
/// bundle.
fn vst2_bundle_library_name(package: &str, target: CompilationTarget) -> String {
match target {
CompilationTarget::Linux(_) => format!("{package}.so"),
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal => {
format!("{package}.vst/Contents/MacOS/{package}")
}
CompilationTarget::Windows(_) => format!("{package}.dll"),
}
}
/// The full path to the library file inside of a VST3 bundle, including the leading `.vst3`
/// directory.
///
/// See <https://developer.steinberg.help/display/VST/Plug-in+Format+Structure>.
fn vst3_bundle_library_name(package: &str, target: CompilationTarget) -> String {
match target {
CompilationTarget::Linux(Architecture::X86) => {
format!("{package}.vst3/Contents/i386-linux/{package}.so")
}
CompilationTarget::Linux(Architecture::X86_64) => {
format!("{package}.vst3/Contents/x86_64-linux/{package}.so")
}
CompilationTarget::Linux(Architecture::AArch64) => {
format!("{package}.vst3/Contents/aarch64-linux/{package}.so")
}
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal => {
format!("{package}.vst3/Contents/MacOS/{package}")
}
CompilationTarget::Windows(Architecture::X86) => {
format!("{package}.vst3/Contents/x86-win/{package}.vst3")
}
CompilationTarget::Windows(Architecture::X86_64) => {
format!("{package}.vst3/Contents/x86_64-win/{package}.vst3")
}
CompilationTarget::Windows(Architecture::AArch64) => {
format!("{package}.vst3/Contents/arm_64-win/{package}.vst3")
}
}
}
/// If compiling for macOS, create all of the bundl-y stuff Steinberg and Apple require you to have.
///
/// This still requires you to move the dylib file to `{bundle_home}/Contents/macOS/{package}`
/// yourself first.
pub fn maybe_create_macos_bundle_metadata(
package: &str,
display_name: &str,
bundle_home: &Path,
target: CompilationTarget,
bundle_type: BundleType,
) -> Result<()> {
if !matches!(
target,
CompilationTarget::MacOS(_) | CompilationTarget::MacOSUniversal
) {
return Ok(());
}
let package_type = match bundle_type {
BundleType::Plugin => "BNDL",
BundleType::Binary => "APPL",
};
// TODO: May want to add bundler.toml fields for the identifier, version and signature at some
// point.
fs::write(
bundle_home.join("Contents").join("PkgInfo"),
format!("{package_type}????"),
)
.context("Could not create PkgInfo file")?;
fs::write(
bundle_home.join("Contents").join("Info.plist"),
format!(r#"<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist>
<dict>
<key>CFBundleExecutable</key>
<string>{display_name}</string>
<key>CFBundleIconFile</key>
<string></string>
<key>CFBundleIdentifier</key>
<string>com.nih-plug.{package}</string>
<key>CFBundleName</key>
<string>{display_name}</string>
<key>CFBundleDisplayName</key>
<string>{display_name}</string>
<key>CFBundlePackageType</key>
<string>{package_type}</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleShortVersionString</key>
<string>1.0.0</string>
<key>CFBundleVersion</key>
<string>1.0.0</string>
<key>NSHumanReadableCopyright</key>
<string></string>
<key>NSHighResolutionCapable</key>
<true/>
</dict>
</plist>
"#),
)
.context("Could not create Info.plist file")?;
Ok(())
}