pixels/examples/conway/main.rs

374 lines
13 KiB
Rust
Raw Normal View History

#![deny(clippy::all)]
#![forbid(unsafe_code)]
use log::debug;
use pixels::{Error, Pixels, SurfaceTexture};
use winit::dpi::{LogicalPosition, LogicalSize, PhysicalSize};
2020-04-13 16:13:40 +10:00
use winit::event::{Event, VirtualKeyCode};
use winit::event_loop::{ControlFlow, EventLoop};
use winit_input_helper::WinitInputHelper;
const SCREEN_WIDTH: u32 = 400;
const SCREEN_HEIGHT: u32 = 300;
fn main() -> Result<(), Error> {
env_logger::init();
let event_loop = EventLoop::new();
let mut input = WinitInputHelper::new();
2020-04-13 16:13:40 +10:00
let (window, surface, p_width, p_height, mut hidpi_factor) =
create_window("Conway's Game of Life", &event_loop);
let surface_texture = SurfaceTexture::new(p_width, p_height, surface);
let mut life = ConwayGrid::new_random(SCREEN_WIDTH as usize, SCREEN_HEIGHT as usize);
let mut pixels = Pixels::new(SCREEN_WIDTH, SCREEN_HEIGHT, surface_texture)?;
let mut paused = false;
let mut draw_state: Option<bool> = None;
event_loop.run(move |event, _, control_flow| {
// The one and only event that winit_input_helper doesn't have for us...
2020-04-13 16:13:40 +10:00
if let Event::RedrawRequested(_) = event {
life.draw(pixels.get_frame());
2020-04-13 16:13:40 +10:00
pixels.render().unwrap();
}
// For everything else, for let winit_input_helper collect events to build its state.
// It returns `true` when it is time to update our game state and request a redraw.
if input.update(event) {
// Close events
if input.key_pressed(VirtualKeyCode::Escape) || input.quit() {
*control_flow = ControlFlow::Exit;
return;
}
if input.key_pressed(VirtualKeyCode::P) {
paused = !paused;
}
if input.key_pressed(VirtualKeyCode::Space) {
// Space is frame-step, so ensure we're paused
paused = true;
}
if input.key_pressed(VirtualKeyCode::R) {
life.randomize();
}
// Handle mouse. This is a bit involved since support some simple
// line drawing (mostly because it makes nice looking patterns).
let (mouse_cell, mouse_prev_cell) = input
.mouse()
.map(|(mx, my)| {
let (dx, dy) = input.mouse_diff();
let prev_x = mx - dx;
let prev_y = my - dy;
let dpx = hidpi_factor as f32;
let (w, h) = (p_width as f32 / dpx, p_height as f32 / dpx);
let mx_i = ((mx / w) * (SCREEN_WIDTH as f32)).round() as isize;
let my_i = ((my / h) * (SCREEN_HEIGHT as f32)).round() as isize;
let px_i = ((prev_x / w) * (SCREEN_WIDTH as f32)).round() as isize;
let py_i = ((prev_y / h) * (SCREEN_HEIGHT as f32)).round() as isize;
((mx_i, my_i), (px_i, py_i))
})
.unwrap_or_default();
if input.mouse_pressed(0) {
debug!("Mouse click at {:?}", mouse_cell);
draw_state = Some(life.toggle(mouse_cell.0, mouse_cell.1));
} else if let Some(draw_alive) = draw_state {
let release = input.mouse_released(0);
let held = input.mouse_held(0);
debug!("Draw at {:?} => {:?}", mouse_prev_cell, mouse_cell);
debug!("Mouse held {:?}, release {:?}", held, release);
// If they either released (finishing the drawing) or are still
// in the middle of drawing, keep going.
if release || held {
debug!("Draw line of {:?}", draw_alive);
life.set_line(
mouse_prev_cell.0,
mouse_prev_cell.1,
mouse_cell.0,
mouse_cell.1,
draw_alive,
);
}
// If they let go or are otherwise not clicking anymore, stop drawing.
if release || !held {
debug!("Draw end");
draw_state = None;
}
}
// Adjust high DPI factor
2020-04-13 16:13:40 +10:00
if let Some(factor) = input.scale_factor_changed() {
hidpi_factor = factor;
}
// Resize the window
if let Some(size) = input.window_resized() {
2020-04-13 16:13:40 +10:00
pixels.resize(size.width, size.height);
}
if !paused || input.key_pressed(VirtualKeyCode::Space) {
life.update();
}
window.request_redraw();
}
});
}
// COPYPASTE: ideally this could be shared.
/// Create a window for the game.
///
/// Automatically scales the window to cover about 2/3 of the monitor height.
///
/// # Returns
///
/// Tuple of `(window, surface, width, height, hidpi_factor)`
/// `width` and `height` are in `PhysicalSize` units.
fn create_window(
title: &str,
event_loop: &EventLoop<()>,
) -> (winit::window::Window, pixels::wgpu::Surface, u32, u32, f64) {
// Create a hidden window so we can estimate a good default window size
let window = winit::window::WindowBuilder::new()
.with_visible(false)
.with_title(title)
.build(&event_loop)
.unwrap();
2020-04-13 16:13:40 +10:00
let hidpi_factor = window.scale_factor();
// Get dimensions
let width = SCREEN_WIDTH as f64;
let height = SCREEN_HEIGHT as f64;
let (monitor_width, monitor_height) = {
let size = window.current_monitor().size();
2020-04-13 16:13:40 +10:00
(
size.width as f64 / hidpi_factor,
size.height as f64 / hidpi_factor,
)
};
let scale = (monitor_height / height * 2.0 / 3.0).round();
// Resize, center, and display the window
2020-04-13 16:13:40 +10:00
let min_size: winit::dpi::LogicalSize<f64> =
PhysicalSize::new(width, height).to_logical(hidpi_factor);
let default_size = LogicalSize::new(width * scale, height * scale);
let center = LogicalPosition::new(
(monitor_width - width * scale) / 2.0,
(monitor_height - height * scale) / 2.0,
);
window.set_inner_size(default_size);
window.set_min_inner_size(Some(min_size));
window.set_outer_position(center);
window.set_visible(true);
let surface = pixels::wgpu::Surface::create(&window);
2020-04-13 16:13:40 +10:00
let size = default_size.to_physical::<f64>(hidpi_factor);
(
window,
surface,
size.width.round() as u32,
size.height.round() as u32,
hidpi_factor,
)
}
/// Generate a pseudorandom seed for the game's PRNG.
fn generate_seed() -> (u64, u64) {
use byteorder::{ByteOrder, NativeEndian};
use getrandom::getrandom;
let mut seed = [0_u8; 16];
getrandom(&mut seed).expect("failed to getrandom");
(
NativeEndian::read_u64(&seed[0..8]),
NativeEndian::read_u64(&seed[8..16]),
)
}
const BIRTH_RULE: [bool; 9] = [false, false, false, true, false, false, false, false, false];
const SURVIVE_RULE: [bool; 9] = [false, false, true, true, false, false, false, false, false];
const INITIAL_FILL: f32 = 0.3;
#[derive(Clone, Copy, Debug, Default)]
struct Cell {
alive: bool,
// Used for the trail effect. Always 255 if `self.alive` is true (We could
// use an enum for Cell, but it makes several functions slightly more
// complex, and doesn't actually make anything any simpler here, or save any
// memory, so we don't)
heat: u8,
}
impl Cell {
fn new(alive: bool) -> Self {
Self { alive, heat: 0 }
}
#[must_use]
fn update_neibs(self, n: usize) -> Self {
let next_alive = if self.alive {
SURVIVE_RULE[n]
} else {
BIRTH_RULE[n]
};
self.next_state(next_alive)
}
#[must_use]
fn next_state(mut self, alive: bool) -> Self {
self.alive = alive;
if self.alive {
self.heat = 255;
} else {
self.heat = self.heat.saturating_sub(1);
}
self
}
fn set_alive(&mut self, alive: bool) {
*self = self.next_state(alive);
}
fn cool_off(&mut self, decay: f32) {
if !self.alive {
let heat = (self.heat as f32 * decay).min(255.0).max(0.0);
assert!(heat.is_finite());
self.heat = heat as u8;
}
}
}
#[derive(Clone, Debug)]
struct ConwayGrid {
cells: Vec<Cell>,
width: usize,
height: usize,
// Should always be the same size as `cells`. When updating, we read from
// `cells` and write to `scratch_cells`, then swap. Otherwise it's not in
// use, and `cells` should be updated directly.
scratch_cells: Vec<Cell>,
}
impl ConwayGrid {
fn new_empty(width: usize, height: usize) -> Self {
assert!(width != 0 && height != 0);
let size = width.checked_mul(height).expect("too big");
Self {
cells: vec![Cell::default(); size],
scratch_cells: vec![Cell::default(); size],
width,
height,
}
}
fn new_random(width: usize, height: usize) -> Self {
let mut result = Self::new_empty(width, height);
result.randomize();
result
}
fn randomize(&mut self) {
let mut rng: randomize::PCG32 = generate_seed().into();
for c in self.cells.iter_mut() {
let alive = randomize::f32_half_open_right(rng.next_u32()) > INITIAL_FILL;
*c = Cell::new(alive);
}
// run a few simulation iterations for aesthetics (If we don't, the
// noise is ugly)
for _ in 0..3 {
self.update();
}
// Smooth out noise in the heatmap that would remain for a while
for c in self.cells.iter_mut() {
c.cool_off(0.4);
}
}
fn count_neibs(&self, x: usize, y: usize) -> usize {
let (xm1, xp1) = if x == 0 {
(self.width - 1, x + 1)
} else if x == self.width - 1 {
(x - 1, 0)
} else {
(x - 1, x + 1)
};
let (ym1, yp1) = if y == 0 {
(self.height - 1, y + 1)
} else if y == self.height - 1 {
(y - 1, 0)
} else {
(y - 1, y + 1)
};
2020-04-13 16:13:40 +10:00
self.cells[xm1 + ym1 * self.width].alive as usize
+ self.cells[x + ym1 * self.width].alive as usize
+ self.cells[xp1 + ym1 * self.width].alive as usize
+ self.cells[xm1 + y * self.width].alive as usize
+ self.cells[xp1 + y * self.width].alive as usize
+ self.cells[xm1 + yp1 * self.width].alive as usize
+ self.cells[x + yp1 * self.width].alive as usize
2020-04-13 16:13:40 +10:00
+ self.cells[xp1 + yp1 * self.width].alive as usize
}
fn update(&mut self) {
for y in 0..self.height {
for x in 0..self.width {
let neibs = self.count_neibs(x, y);
let idx = x + y * self.width;
let next = self.cells[idx].update_neibs(neibs);
// Write into scratch_cells, since we're still reading from `self.cells`
self.scratch_cells[idx] = next;
}
}
std::mem::swap(&mut self.scratch_cells, &mut self.cells);
}
fn toggle(&mut self, x: isize, y: isize) -> bool {
if let Some(i) = self.grid_idx(x, y) {
let was_alive = self.cells[i].alive;
self.cells[i].set_alive(!was_alive);
!was_alive
} else {
false
}
}
fn draw(&self, screen: &mut [u8]) {
debug_assert_eq!(screen.len(), 4 * self.cells.len());
for (c, pix) in self.cells.iter().zip(screen.chunks_exact_mut(4)) {
let color = if c.alive {
[0, 0xff, 0xff, 0xff]
} else {
[0, 0, c.heat, 0xff]
};
pix.copy_from_slice(&color);
}
}
fn set_line(&mut self, x0: isize, y0: isize, x1: isize, y1: isize, alive: bool) {
// probably should do sutherland-hodgeman if this were more serious.
// instead just clamp the start pos, and draw until moving towards the
// end pos takes us out of bounds.
let x0 = x0.max(0).min(self.width as isize);
let y0 = y0.max(0).min(self.height as isize);
for (x, y) in line_drawing::Bresenham::new((x0, y0), (x1, y1)) {
if let Some(i) = self.grid_idx(x, y) {
self.cells[i].set_alive(alive);
} else {
break;
}
}
}
fn grid_idx<I: std::convert::TryInto<usize>>(&self, x: I, y: I) -> Option<usize> {
if let (Ok(x), Ok(y)) = (x.try_into(), y.try_into()) {
if x < self.width && y < self.height {
Some(x + y * self.width)
} else {
None
}
} else {
None
}
}
}