rp-hal-boards/boards/seeeduino-xiao-rp2040/examples/seeeduino_xiao_rp2040_blinky.rs

134 lines
3.7 KiB
Rust
Raw Permalink Normal View History

//! # Seeeduino XIAO RP2040 Blinky Example
//!
//! Blinks the LED on a Seeeduino XIAO RP2040 16MB board.
//!
//! This will blink an LED attached to GPIO25, which is the pin the XIAO RP2040
//! uses for the on-board LED.
//!
//! See the `Cargo.toml` file for Copyright and license details.
#![no_std]
#![no_main]
// The macro for our start-up function
use seeeduino_xiao_rp2040::entry;
// GPIO traits
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::PwmPin;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Pull in any important traits
use seeeduino_xiao_rp2040::hal::prelude::*;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use seeeduino_xiao_rp2040::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use seeeduino_xiao_rp2040::hal;
use hal::gpio::PinState;
// The minimum PWM value (i.e. LED brightness) we want
const LOW: u16 = 0;
// The maximum PWM value (i.e. LED brightness) we want
const HIGH: u16 = 60000;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then blinks the LED in an
/// infinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// The default is to generate a 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
seeeduino_xiao_rp2040::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = seeeduino_xiao_rp2040::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
// Init PWMs
let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
// Configure PWM4
let pwm = &mut pwm_slices.pwm0;
pwm.set_ph_correct();
pwm.enable();
// Output channel B on PWM0 to the red LED pin, initially off
let channel = &mut pwm.channel_b;
channel.output_to(pins.led_red);
channel.set_duty(u16::MAX);
// Set the blue LED to be an output, initially off
let mut led_blue_pin = pins.led_blue.into_push_pull_output_in_state(PinState::High);
// Turn off the green LED
let mut _led_green_pin = pins
.led_green
.into_push_pull_output_in_state(PinState::High);
loop {
// Blink blue LED at 1 Hz
for _ in 0..5 {
led_blue_pin.set_low().unwrap();
delay.delay_ms(500);
led_blue_pin.set_high().unwrap();
delay.delay_ms(500);
}
// Ramp red LED brightness up
for i in (LOW..=HIGH).skip(30) {
delay.delay_us(100);
channel.set_duty(u16::MAX - i);
}
// Ramp red LED brightness down
for i in (LOW..=HIGH).rev().skip(30) {
delay.delay_us(100);
channel.set_duty(u16::MAX - i);
}
}
}
// End of file