rp-hal-boards/rp2040-hal/src/adc.rs

205 lines
5.7 KiB
Rust
Raw Normal View History

//! Analog-Digital Converter (ADC)
2021-09-02 22:40:13 +10:00
//!
//! See [Chapter 4 Section 9](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details
//!
//! ## Usage
//!
//! Capture ADC reading from a pin
//! ```no_run
//! use embedded_hal::adc::OneShot;
//! use rp2040_hal::{adc::Adc, gpio::Pins, pac, sio::Sio};
//! let mut peripherals = pac::Peripherals::take().unwrap();
//! let sio = Sio::new(peripherals.SIO);
//! let pins = Pins::new(peripherals.IO_BANK0, peripherals.PADS_BANK0, sio.gpio_bank0, &mut peripherals.RESETS);
//! // Enable adc
//! let mut adc = Adc::new(peripherals.ADC, &mut peripherals.RESETS);
//! // Configure one of the pins as an ADC input
//! let mut adc_pin_0 = pins.gpio26.into_floating_input();
//! // Read the ADC counts from the ADC channel
//! let pin_adc_counts: u16 = adc.read(&mut adc_pin_0).unwrap();
//! ```
//!
//! Capture ADC reading from temperature sensor. Note that this needs conversion to be a real-world temperature.
//! ```no_run
//! use embedded_hal::adc::OneShot;
//! use rp2040_hal::{adc::Adc, gpio::Pins, pac, sio::Sio};
//! let mut peripherals = pac::Peripherals::take().unwrap();
//! let sio = Sio::new(peripherals.SIO);
//! let pins = Pins::new(peripherals.IO_BANK0, peripherals.PADS_BANK0, sio.gpio_bank0, &mut peripherals.RESETS);
//! // Enable adc
//! let mut adc = Adc::new(peripherals.ADC, &mut peripherals.RESETS);
//! // Enable the temperature sensor
//! let mut temperature_sensor = adc.enable_temp_sensor();
//! // Read the ADC counts from the ADC channel
//! let temperature_adc_counts: u16 = adc.read(&mut temperature_sensor).unwrap();
//! ```
//!
//! See [examples/adc.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/adc.rs) and
//! [pico_explorer_showcase.rs](https://github.com/rp-rs/rp-hal/tree/main/boards/pico_explorer/examples/pico_explorer_showcase.rs) for more complete examples
use hal::adc::{Channel, OneShot};
use pac::{ADC, RESETS};
use crate::{
gpio::Pin,
gpio::{
bank0::{Gpio26, Gpio27, Gpio28, Gpio29},
FloatingInput,
},
resets::SubsystemReset,
};
const TEMPERATURE_SENSOR_CHANNEL: u8 = 4;
/// Adc
pub struct Adc {
device: ADC,
}
impl Adc {
/// Create new adc struct and bring up adc
pub fn new(device: ADC, resets: &mut RESETS) -> Self {
device.reset_bring_down(resets);
device.reset_bring_up(resets);
// Enable adc
device.cs.write(|w| w.en().set_bit());
// Wait for adc ready
while !device.cs.read().ready().bit_is_set() {}
Self { device }
}
/// Free underlying register block
pub fn free(self) -> ADC {
self.device
}
/// Read single
pub fn read_single(&self) -> u16 {
self.device.result.read().result().bits()
}
/// Enable temperature sensor, returns a channel to use
pub fn enable_temp_sensor(&mut self) -> TempSense {
self.device.cs.modify(|_, w| w.ts_en().set_bit());
TempSense { __private: () }
}
/// Disable temperature sensor, consumes channel
pub fn disable_temp_sensor(&mut self, _: TempSense) {
self.device.cs.modify(|_, w| w.ts_en().clear_bit());
}
}
macro_rules! channel {
($pin:ident, $channel:expr) => {
impl Channel<Adc> for Pin<$pin, FloatingInput> {
type ID = u8; // ADC channels are identified numerically
fn channel() -> u8 {
$channel
}
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::adc::nb::Channel<Adc> for Pin<$pin, FloatingInput> {
type ID = u8; // ADC channels are identified numerically
fn channel(&self) -> u8 {
$channel
}
}
};
}
channel!(Gpio26, 0);
channel!(Gpio27, 1);
channel!(Gpio28, 2);
channel!(Gpio29, 3);
/// Internal temperature sensor type
pub struct TempSense {
__private: (),
}
impl Channel<Adc> for TempSense {
type ID = u8; // ADC channels are identified numerically
fn channel() -> u8 {
TEMPERATURE_SENSOR_CHANNEL
}
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::adc::nb::Channel<Adc> for TempSense {
type ID = u8; // ADC channels are identified numerically
fn channel(&self) -> u8 {
TEMPERATURE_SENSOR_CHANNEL
}
}
impl<WORD, PIN> OneShot<Adc, WORD, PIN> for Adc
where
WORD: From<u16>,
PIN: Channel<Adc, ID = u8>,
{
type Error = ();
fn read(&mut self, _pin: &mut PIN) -> nb::Result<WORD, Self::Error> {
let chan = PIN::channel();
if chan == 4 {
self.device.cs.modify(|_, w| w.ts_en().set_bit())
}
while !self.device.cs.read().ready().bit_is_set() {
cortex_m::asm::nop();
}
self.device
.cs
.modify(|_, w| unsafe { w.ainsel().bits(chan).start_once().set_bit() });
while !self.device.cs.read().ready().bit_is_set() {
cortex_m::asm::nop();
}
Ok(self.device.result.read().result().bits().into())
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<WORD, PIN> eh1_0_alpha::adc::nb::OneShot<Adc, WORD, PIN> for Adc
where
WORD: From<u16>,
PIN: eh1_0_alpha::adc::nb::Channel<Adc, ID = u8>,
{
type Error = ();
fn read(&mut self, pin: &mut PIN) -> nb::Result<WORD, Self::Error> {
let chan = PIN::channel(pin);
if chan == 4 {
self.device.cs.modify(|_, w| w.ts_en().set_bit())
}
while !self.device.cs.read().ready().bit_is_set() {
cortex_m::asm::nop();
}
self.device
.cs
.modify(|_, w| unsafe { w.ainsel().bits(chan).start_once().set_bit() });
while !self.device.cs.read().ready().bit_is_set() {
cortex_m::asm::nop();
}
Ok(self.device.result.read().result().bits().into())
}
}