rp-hal-boards/rp2040-hal/examples/adc.rs

129 lines
4 KiB
Rust
Raw Normal View History

2021-09-27 23:42:19 +10:00
//! # ADC Example
//!
//! This application demonstrates how to read ADC samples from the temperature
//! sensor and pin and output them to the UART on pins 1 and 2 at 9600 baud.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
2022-04-18 20:49:41 +10:00
//! See the `Cargo.toml` file for Copyright and license details.
2021-09-27 23:42:19 +10:00
2021-09-02 22:40:13 +10:00
#![no_std]
#![no_main]
2021-09-27 23:42:19 +10:00
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
2021-09-02 22:40:13 +10:00
use panic_halt as _;
2021-09-27 23:42:19 +10:00
// Alias for our HAL crate
2021-09-02 22:40:13 +10:00
use rp2040_hal as hal;
2021-09-28 04:01:46 +10:00
// Some traits we need
2021-09-27 23:42:19 +10:00
use core::fmt::Write;
use embedded_hal::adc::OneShot;
use fugit::RateExtU32;
2021-12-04 00:04:45 +11:00
use rp2040_hal::Clock;
2021-09-27 23:42:19 +10:00
// UART related types
use hal::uart::{DataBits, StopBits, UartConfig};
2021-09-27 23:42:19 +10:00
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
2021-09-02 22:40:13 +10:00
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
2021-09-02 22:40:13 +10:00
2021-09-27 23:42:19 +10:00
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
2021-09-02 22:40:13 +10:00
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
2021-09-27 23:42:19 +10:00
/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
2021-09-27 23:42:19 +10:00
///
/// The function configures the RP2040 peripherals, then prints the temperature
/// in an infinite loop.
#[rp2040_hal::entry]
2021-09-02 22:40:13 +10:00
fn main() -> ! {
2021-09-27 23:42:19 +10:00
// Grab our singleton objects
2021-09-02 22:40:13 +10:00
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
2021-09-27 23:42:19 +10:00
// Set up the watchdog driver - needed by the clock setup code
2021-12-04 00:04:45 +11:00
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
2021-09-02 22:40:13 +10:00
2021-09-27 23:42:19 +10:00
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
2021-09-02 22:40:13 +10:00
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
2021-09-27 23:42:19 +10:00
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
2021-09-02 22:40:13 +10:00
2021-09-27 23:42:19 +10:00
// The single-cycle I/O block controls our GPIO pins
2021-12-04 00:04:45 +11:00
let sio = hal::Sio::new(pac.SIO);
2021-09-27 23:42:19 +10:00
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
2021-09-02 22:40:13 +10:00
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// UART TX (characters sent from pico) on pin 1 (GPIO0) and RX (on pin 2 (GPIO1)
let uart_pins = (
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
);
2021-09-27 23:42:19 +10:00
// Create a UART driver
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
2021-12-03 08:33:21 +11:00
.enable(
UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One),
clocks.peripheral_clock.freq(),
2021-12-03 08:33:21 +11:00
)
.unwrap();
2021-09-02 22:40:13 +10:00
2021-09-27 23:42:19 +10:00
// Write to the UART
2021-09-02 22:40:13 +10:00
uart.write_full_blocking(b"ADC example\r\n");
2021-09-27 23:42:19 +10:00
// Enable ADC
2021-12-04 00:04:45 +11:00
let mut adc = hal::Adc::new(pac.ADC, &mut pac.RESETS);
2021-09-27 23:42:19 +10:00
2021-09-02 22:40:13 +10:00
// Enable the temperature sense channel
let mut temperature_sensor = adc.enable_temp_sensor();
2021-09-27 23:42:19 +10:00
// Configure GPIO26 as an ADC input
2021-09-02 22:40:13 +10:00
let mut adc_pin_0 = pins.gpio26.into_floating_input();
loop {
// Read the raw ADC counts from the temperature sensor channel.
let temp_sens_adc_counts: u16 = adc.read(&mut temperature_sensor).unwrap();
let pin_adc_counts: u16 = adc.read(&mut adc_pin_0).unwrap();
writeln!(
uart,
"ADC readings: Temperature: {:02} Pin: {:02}\r\n",
temp_sens_adc_counts, pin_adc_counts
)
.unwrap();
delay.delay_ms(1000);
}
}
2021-09-27 23:42:19 +10:00
// End of file