rp-hal-boards/boards/pimoroni-servo2040/examples/pimoroni_servo2040_pwm_servo.rs

137 lines
4.3 KiB
Rust
Raw Normal View History

//! # Pimoroni Servo2040 PWM Micro Servo Example
//!
//! Moves the micro servo on a Servo2040 board using the PWM peripheral.
//!
//! This will move in different positions the motor attached to GP0.
#![no_std]
#![no_main]
// GPIO traits
use embedded_hal::timer::CountDown;
use embedded_hal::PwmPin;
// Traits for converting integers to amounts of time
use fugit::ExtU64;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use pimoroni_servo2040::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use pimoroni_servo2040::hal;
/// Number of microseconds for the pwm signal period.
const PERIOD_US: u32 = 20_000;
/// Max resolution for the pwm signal.
const TOP: u16 = u16::MAX;
#[pimoroni_servo2040::entry]
fn main() -> ! {
let mut pac = pac::Peripherals::take().unwrap();
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
let sio = hal::Sio::new(pac.SIO);
let _clocks = hal::clocks::init_clocks_and_plls(
pimoroni_servo2040::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Configure the Timer peripheral in count-down mode
let timer = hal::Timer::new(pac.TIMER, &mut pac.RESETS);
let mut count_down = timer.count_down();
let pins = pimoroni_servo2040::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
let pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
const MIN_PULSE: u16 = 1000;
const MID_PULSE: u16 = 1500;
const MAX_PULSE: u16 = 2000;
let mut pwm: hal::pwm::Slice<_, _> = pwm_slices.pwm0;
// 50Hz desired frequency
// Rp2040 clock = 125MHz
// Top = 65_535, resolution for counter (maximum possible u16 value)
// Wrap = Top+1 (number of possible values)
// Phase correction multiplier = 2 if phase correction enabled, else 1
// Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency)
// Divider = 125,000,000/(65_536 * 1 * 50)
// Divider = 38.14639
// Divider int = 38
// Divider frac = 3 (3/16 = 0.1875, smallest frac greater than desired clock divider).
pwm.set_div_int(38);
pwm.set_div_frac(3);
// If phase correction enabled, then values would be:
// Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency)
// Divider = 125,000,000/(65_536 * 2 * 50)
// Divider = 19.073195
// Divider int = 19
// Divider frac = 2 (2/16 = .1250, smallest frac greater than desired clock divider).
// pwm.set_ph_correct();
// pwm.set_div_int(19);
// pwm.set_div_frac(2);
pwm.set_top(TOP);
pwm.enable();
// Output channel A on PWM0 to the GPIO0/servo1 pin
let mut channel_a = pwm.channel_a;
let _channel_a_pin = channel_a.output_to(pins.servo1);
let movement_delay = 400.millis();
// Infinite loop, moving micro servo from one position to another.
// You may need to adjust the pulse width since several servos from
// different manufacturers respond differently.
loop {
// move to 0°
channel_a.set_duty(us_to_duty(MID_PULSE));
count_down.start(movement_delay);
let _ = nb::block!(count_down.wait());
// 0° to 90°
channel_a.set_duty(us_to_duty(MAX_PULSE));
count_down.start(movement_delay);
let _ = nb::block!(count_down.wait());
// 90° to 0°
channel_a.set_duty(us_to_duty(MID_PULSE));
count_down.start(movement_delay);
let _ = nb::block!(count_down.wait());
// 0° to -90°
channel_a.set_duty(us_to_duty(MIN_PULSE));
count_down.start(movement_delay);
let _ = nb::block!(count_down.wait());
}
}
/// Convert microseconds to duty value.
///
/// This function uses the constants TOP and PERIOD_US defined at the top of the file.
fn us_to_duty(us: u16) -> u16 {
// Do math in u32 so we maintain higher precision. If we do math in u16, we need to divide first
// and lose some precision when truncating the remainder.
(TOP as u32 * us as u32 / PERIOD_US) as u16
}