2022-09-17 21:04:16 +10:00
|
|
|
//! # Pimoroni Servo2040 PWM Micro Servo Example
|
|
|
|
//!
|
|
|
|
//! Moves the micro servo on a Servo2040 board using the PWM peripheral.
|
|
|
|
//!
|
|
|
|
//! This will move in different positions the motor attached to GP0.
|
|
|
|
#![no_std]
|
|
|
|
#![no_main]
|
|
|
|
|
|
|
|
// GPIO traits
|
|
|
|
use embedded_hal::timer::CountDown;
|
|
|
|
use embedded_hal::PwmPin;
|
|
|
|
|
|
|
|
// Traits for converting integers to amounts of time
|
|
|
|
use fugit::ExtU64;
|
|
|
|
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
|
|
// be linked)
|
|
|
|
use panic_halt as _;
|
|
|
|
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
|
|
// register access
|
|
|
|
use pimoroni_servo2040::hal::pac;
|
|
|
|
|
|
|
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
|
|
|
// higher-level drivers.
|
|
|
|
use pimoroni_servo2040::hal;
|
|
|
|
|
|
|
|
/// Number of microseconds for the pwm signal period.
|
|
|
|
const PERIOD_US: u32 = 20_000;
|
|
|
|
/// Max resolution for the pwm signal.
|
|
|
|
const TOP: u16 = u16::MAX;
|
|
|
|
|
|
|
|
#[pimoroni_servo2040::entry]
|
|
|
|
fn main() -> ! {
|
|
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
|
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
|
|
|
|
|
|
|
let sio = hal::Sio::new(pac.SIO);
|
|
|
|
|
|
|
|
let _clocks = hal::clocks::init_clocks_and_plls(
|
|
|
|
pimoroni_servo2040::XOSC_CRYSTAL_FREQ,
|
|
|
|
pac.XOSC,
|
|
|
|
pac.CLOCKS,
|
|
|
|
pac.PLL_SYS,
|
|
|
|
pac.PLL_USB,
|
|
|
|
&mut pac.RESETS,
|
|
|
|
&mut watchdog,
|
|
|
|
)
|
|
|
|
.ok()
|
|
|
|
.unwrap();
|
|
|
|
|
|
|
|
// Configure the Timer peripheral in count-down mode
|
|
|
|
let timer = hal::Timer::new(pac.TIMER, &mut pac.RESETS);
|
|
|
|
let mut count_down = timer.count_down();
|
|
|
|
|
|
|
|
let pins = pimoroni_servo2040::Pins::new(
|
|
|
|
pac.IO_BANK0,
|
|
|
|
pac.PADS_BANK0,
|
|
|
|
sio.gpio_bank0,
|
|
|
|
&mut pac.RESETS,
|
|
|
|
);
|
|
|
|
|
|
|
|
let pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
|
|
|
|
|
|
|
|
const MIN_PULSE: u16 = 1000;
|
|
|
|
const MID_PULSE: u16 = 1500;
|
|
|
|
const MAX_PULSE: u16 = 2000;
|
|
|
|
|
|
|
|
let mut pwm: hal::pwm::Slice<_, _> = pwm_slices.pwm0;
|
2022-09-19 04:31:59 +10:00
|
|
|
|
|
|
|
// 50Hz desired frequency
|
|
|
|
// Rp2040 clock = 125MHz
|
|
|
|
// Top = 65_535, resolution for counter (maximum possible u16 value)
|
|
|
|
// Wrap = Top+1 (number of possible values)
|
|
|
|
// Phase correction multiplier = 2 if phase correction enabled, else 1
|
|
|
|
|
|
|
|
// Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency)
|
|
|
|
// Divider = 125,000,000/(65_536 * 1 * 50)
|
|
|
|
// Divider = 38.14639
|
|
|
|
// Divider int = 38
|
|
|
|
// Divider frac = 3 (3/16 = 0.1875, smallest frac greater than desired clock divider).
|
2022-09-17 21:04:16 +10:00
|
|
|
pwm.set_div_int(38);
|
|
|
|
pwm.set_div_frac(3);
|
2022-09-19 04:31:59 +10:00
|
|
|
|
|
|
|
// If phase correction enabled, then values would be:
|
|
|
|
// Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency)
|
|
|
|
// Divider = 125,000,000/(65_536 * 2 * 50)
|
|
|
|
// Divider = 19.073195
|
|
|
|
// Divider int = 19
|
|
|
|
// Divider frac = 2 (2/16 = .1250, smallest frac greater than desired clock divider).
|
|
|
|
|
|
|
|
// pwm.set_ph_correct();
|
|
|
|
// pwm.set_div_int(19);
|
|
|
|
// pwm.set_div_frac(2);
|
2022-09-17 21:04:16 +10:00
|
|
|
pwm.set_top(TOP);
|
|
|
|
pwm.enable();
|
|
|
|
|
|
|
|
// Output channel A on PWM0 to the GPIO0/servo1 pin
|
|
|
|
let mut channel_a = pwm.channel_a;
|
|
|
|
let _channel_a_pin = channel_a.output_to(pins.servo1);
|
|
|
|
let movement_delay = 400.millis();
|
|
|
|
|
|
|
|
// Infinite loop, moving micro servo from one position to another.
|
|
|
|
// You may need to adjust the pulse width since several servos from
|
|
|
|
// different manufacturers respond differently.
|
|
|
|
loop {
|
|
|
|
// move to 0°
|
|
|
|
channel_a.set_duty(us_to_duty(MID_PULSE));
|
|
|
|
count_down.start(movement_delay);
|
|
|
|
let _ = nb::block!(count_down.wait());
|
|
|
|
|
|
|
|
// 0° to 90°
|
|
|
|
channel_a.set_duty(us_to_duty(MAX_PULSE));
|
|
|
|
count_down.start(movement_delay);
|
|
|
|
let _ = nb::block!(count_down.wait());
|
|
|
|
|
|
|
|
// 90° to 0°
|
|
|
|
channel_a.set_duty(us_to_duty(MID_PULSE));
|
|
|
|
count_down.start(movement_delay);
|
|
|
|
let _ = nb::block!(count_down.wait());
|
|
|
|
|
|
|
|
// 0° to -90°
|
|
|
|
channel_a.set_duty(us_to_duty(MIN_PULSE));
|
|
|
|
count_down.start(movement_delay);
|
|
|
|
let _ = nb::block!(count_down.wait());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert microseconds to duty value.
|
|
|
|
///
|
|
|
|
/// This function uses the constants TOP and PERIOD_US defined at the top of the file.
|
|
|
|
fn us_to_duty(us: u16) -> u16 {
|
|
|
|
// Do math in u32 so we maintain higher precision. If we do math in u16, we need to divide first
|
|
|
|
// and lose some precision when truncating the remainder.
|
|
|
|
(TOP as u32 * us as u32 / PERIOD_US) as u16
|
|
|
|
}
|