rp-hal-boards/rp2040-hal/examples/uart.rs

109 lines
3 KiB
Rust
Raw Normal View History

2021-09-28 03:52:13 +10:00
//! # UART Example
//!
//! This application demonstrates how to use the UART Driver to talk to a serial
//! connection.
//!
//! It may need to be adapted to your particular board layout and/or pin
//! assignment.
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
2021-09-28 03:52:13 +10:00
// The macro for our start-up function
use cortex_m_rt::entry;
2021-09-28 03:52:13 +10:00
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
2021-09-28 03:52:13 +10:00
// Alias for our HAL crate
use rp2040_hal as hal;
2021-09-28 03:52:13 +10:00
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
// Some traits we need
2021-09-28 03:58:16 +10:00
use core::fmt::Write;
2021-09-28 03:52:13 +10:00
use embedded_time::fixed_point::FixedPoint;
use rp2040_hal::clocks::Clock;
/// The linker will place this boot block at the start of our program image. We
// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
2021-09-28 03:52:13 +10:00
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then writes to the UART in
/// an inifinite loop.
#[entry]
fn main() -> ! {
2021-09-28 03:52:13 +10:00
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
2021-09-28 03:52:13 +10:00
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
2021-09-28 03:52:13 +10:00
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
2021-09-28 03:52:13 +10:00
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::sio::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
2021-09-28 03:52:13 +10:00
let mut uart = hal::uart::UartPeripheral::<_, _>::enable(
pac.UART0,
&mut pac.RESETS,
hal::uart::common_configs::_9600_8_N_1,
clocks.peripheral_clock.into(),
)
.unwrap();
2021-09-28 03:52:13 +10:00
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
let _tx_pin = pins.gpio0.into_mode::<hal::gpio::FunctionUart>();
2021-09-28 03:52:13 +10:00
// UART RX (characters reveived by RP2040) on pin 2 (GPIO1)
let _rx_pin = pins.gpio1.into_mode::<hal::gpio::FunctionUart>();
uart.write_full_blocking(b"UART example\r\n");
let mut value = 0u32;
loop {
writeln!(uart, "value: {:02}\r", value).unwrap();
delay.delay_ms(1000);
value += 1
}
}
2021-09-28 04:01:46 +10:00
// End of file