rp-hal-boards/rp2040-hal/examples/blinky.rs

92 lines
2.7 KiB
Rust
Raw Normal View History

2021-09-27 23:47:25 +10:00
//! # GPIO 'Blinky' Example
//!
2021-09-27 23:47:25 +10:00
//! This application demonstrates how to control a GPIO pin on the RP2040.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
2022-04-18 20:49:41 +10:00
//! See the `Cargo.toml` file for Copyright and license details.
2021-09-27 23:47:25 +10:00
#![no_std]
#![no_main]
2021-09-27 23:47:25 +10:00
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
2021-04-25 07:22:27 +10:00
use panic_halt as _;
2021-09-27 23:47:25 +10:00
// Alias for our HAL crate
use rp2040_hal as hal;
2021-09-27 23:47:25 +10:00
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
2021-09-28 04:01:46 +10:00
// Some traits we need
2021-09-27 23:47:25 +10:00
use embedded_hal::digital::v2::OutputPin;
use embedded_time::fixed_point::FixedPoint;
use rp2040_hal::clocks::Clock;
2021-09-27 23:47:25 +10:00
/// The linker will place this boot block at the start of our program image. We
2021-12-27 06:29:14 +11:00
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
2021-09-27 23:47:25 +10:00
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
2021-09-27 23:47:25 +10:00
///
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
/// an infinite loop. If there is an LED connected to that pin, it will blink.
#[rp2040_hal::entry]
fn main() -> ! {
2021-09-27 23:47:25 +10:00
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
2021-09-27 23:47:25 +10:00
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
2021-12-04 00:04:45 +11:00
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
2021-09-27 23:47:25 +10:00
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
2021-09-27 23:47:25 +10:00
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
2021-09-27 23:47:25 +10:00
// The single-cycle I/O block controls our GPIO pins
2021-12-04 00:04:45 +11:00
let sio = hal::Sio::new(pac.SIO);
2021-09-27 23:47:25 +10:00
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
2021-09-27 23:47:25 +10:00
// Configure GPIO25 as an output
let mut led_pin = pins.gpio25.into_push_pull_output();
loop {
led_pin.set_high().unwrap();
2021-04-26 02:13:21 +10:00
// TODO: Replace with proper 1s delays once we have clocks working
2021-09-27 23:47:25 +10:00
delay.delay_ms(500);
2021-04-26 02:13:21 +10:00
led_pin.set_low().unwrap();
2021-09-27 23:47:25 +10:00
delay.delay_ms(500);
}
}
2021-09-27 23:47:25 +10:00
// End of file