rp-hal-boards/rp2040-hal/src/i2c.rs

532 lines
20 KiB
Rust
Raw Normal View History

//! Inter-Integrated Circuit (I2C) bus
2021-09-19 22:34:11 +10:00
//!
//! See [Chapter 4 Section 3](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
//!
//! ## Usage
//! ```no_run
//! use embedded_time::rate::Extensions;
//! use rp2040_hal::{i2c::I2C, gpio::Pins, pac, sio::Sio};
//! let mut peripherals = pac::Peripherals::take().unwrap();
//! let sio = Sio::new(peripherals.SIO);
//! let pins = Pins::new(peripherals.IO_BANK0, peripherals.PADS_BANK0, sio.gpio_bank0, &mut peripherals.RESETS);
//!
//! let mut i2c = I2C::i2c1(
//! peripherals.I2C1,
//! pins.gpio18.into_mode(), // sda
//! pins.gpio19.into_mode(), // scl
//! 400.kHz(),
//! &mut peripherals.RESETS,
//! 125_000_000.Hz(),
//! );
//!
//! // Scan for devices on the bus by attempting to read from them
//! use embedded_hal::prelude::_embedded_hal_blocking_i2c_Read;
//! for i in 0..=127 {
//! let mut readbuf: [u8; 1] = [0; 1];
//! let result = i2c.read(i, &mut readbuf);
//! if let Ok(d) = result {
//! // Do whatever work you want to do with found devices
//! // writeln!(uart, "Device found at address{:?}", i).unwrap();
//! }
//! }
//!
//! // Write some data to a device at 0x2c
//! use embedded_hal::prelude::_embedded_hal_blocking_i2c_Write;
//! i2c.write(0x2c, &[1, 2, 3]).unwrap();
//!
//! // Write and then read from a device at 0x3a
//! use embedded_hal::prelude::_embedded_hal_blocking_i2c_WriteRead;
//! let mut readbuf: [u8; 1] = [0; 1];
//! i2c.write_read(0x2c, &[1, 2, 3], &mut readbuf).unwrap();
//! ```
//!
//! See [examples/i2c.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/i2c.rs)
//! for a complete example
use crate::{
gpio::pin::bank0::{
BankPinId, Gpio0, Gpio1, Gpio10, Gpio11, Gpio12, Gpio13, Gpio14, Gpio15, Gpio16, Gpio17,
Gpio18, Gpio19, Gpio2, Gpio20, Gpio21, Gpio26, Gpio27, Gpio3, Gpio4, Gpio5, Gpio6, Gpio7,
Gpio8, Gpio9,
},
gpio::pin::{FunctionI2C, Pin, PinId},
resets::SubsystemReset,
typelevel::Sealed,
};
#[cfg(feature = "eh1_0_alpha")]
use eh1_0_alpha::i2c::blocking as eh1;
use embedded_time::rate::Hertz;
use hal::blocking::i2c::{Read, Write, WriteRead};
use rp2040_pac::{I2C0, I2C1, RESETS};
/// I2C error
#[non_exhaustive]
#[derive(Debug)]
pub enum Error {
/// I2C abort with error
Abort(u32),
/// User passed in a read buffer that was 0 or >255 length
InvalidReadBufferLength(usize),
/// User passed in a write buffer that was 0 or >255 length
InvalidWriteBufferLength(usize),
/// Target i2c address is out of range
AddressOutOfRange(u8),
/// Target i2c address is reserved
AddressReserved(u8),
}
/// SCL pin
pub trait SclPin<I2C>: Sealed {}
/// SDA pin
pub trait SdaPin<I2C>: Sealed {}
impl SdaPin<I2C0> for Gpio0 {}
impl SclPin<I2C0> for Gpio1 {}
impl SdaPin<I2C1> for Gpio2 {}
impl SclPin<I2C1> for Gpio3 {}
impl SdaPin<I2C0> for Gpio4 {}
impl SclPin<I2C0> for Gpio5 {}
impl SdaPin<I2C1> for Gpio6 {}
impl SclPin<I2C1> for Gpio7 {}
impl SdaPin<I2C0> for Gpio8 {}
impl SclPin<I2C0> for Gpio9 {}
impl SdaPin<I2C1> for Gpio10 {}
impl SclPin<I2C1> for Gpio11 {}
impl SdaPin<I2C0> for Gpio12 {}
impl SclPin<I2C0> for Gpio13 {}
impl SdaPin<I2C1> for Gpio14 {}
impl SclPin<I2C1> for Gpio15 {}
impl SdaPin<I2C0> for Gpio16 {}
impl SclPin<I2C0> for Gpio17 {}
impl SdaPin<I2C1> for Gpio18 {}
impl SclPin<I2C1> for Gpio19 {}
impl SdaPin<I2C0> for Gpio20 {}
impl SclPin<I2C0> for Gpio21 {}
impl SdaPin<I2C1> for Gpio26 {}
impl SclPin<I2C1> for Gpio27 {}
/// I2C peripheral operating in master mode
pub struct I2C<I2C, Pins> {
i2c: I2C,
pins: Pins,
}
const TX_FIFO_SIZE: u8 = 16;
fn i2c_reserved_addr(addr: u8) -> bool {
(addr & 0x78) == 0 || (addr & 0x78) == 0x78
}
macro_rules! hal {
($($I2CX:ident: ($i2cX:ident),)+) => {
$(
impl<Sda: PinId + BankPinId, Scl: PinId + BankPinId> I2C<$I2CX, (Pin<Sda, FunctionI2C>, Pin<Scl, FunctionI2C>)> {
/// Configures the I2C peripheral to work in master mode
pub fn $i2cX<F, SystemF>(
i2c: $I2CX,
sda_pin: Pin<Sda, FunctionI2C>,
scl_pin: Pin<Scl, FunctionI2C>,
freq: F,
resets: &mut RESETS,
system_clock: SystemF) -> Self
where
F: Into<Hertz<u64>>,
Sda: SdaPin<$I2CX>,
Scl: SclPin<$I2CX>,
SystemF: Into<Hertz<u32>>,
{
let freq = freq.into().0;
assert!(freq <= 1_000_000);
assert!(freq > 0);
let freq = freq as u32;
i2c.reset_bring_down(resets);
i2c.reset_bring_up(resets);
i2c.ic_enable.write(|w| w.enable().disabled());
2021-08-21 02:16:25 +10:00
i2c.ic_con.modify(|_,w| {
w.speed().fast();
w.master_mode().enabled();
w.ic_slave_disable().slave_disabled();
w.ic_restart_en().enabled();
w.tx_empty_ctrl().enabled()
});
i2c.ic_tx_tl.write(|w| unsafe { w.tx_tl().bits(0) });
i2c.ic_rx_tl.write(|w| unsafe { w.rx_tl().bits(0) });
i2c.ic_dma_cr.write(|w| {
w.tdmae().enabled();
w.rdmae().enabled()
});
let freq_in = system_clock.into().0;
// There are some subtleties to I2C timing which we are completely ignoring here
// See: https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
let period = (freq_in + freq / 2) / freq;
2021-08-21 01:46:39 +10:00
let lcnt = period * 3 / 5; // oof this one hurts
let hcnt = period - lcnt;
// Check for out-of-range divisors:
2021-08-21 01:47:11 +10:00
assert!(hcnt <= 0xffff);
assert!(lcnt <= 0xffff);
assert!(hcnt >= 8);
assert!(lcnt >= 8);
// Per I2C-bus specification a device in standard or fast mode must
// internally provide a hold time of at least 300ns for the SDA signal to
// bridge the undefined region of the falling edge of SCL. A smaller hold
// time of 120ns is used for fast mode plus.
let sda_tx_hold_count = if freq < 1000000 {
// sda_tx_hold_count = freq_in [cycles/s] * 300ns * (1s / 1e9ns)
// Reduce 300/1e9 to 3/1e7 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
((freq_in * 3) / 10000000) + 1
} else {
// sda_tx_hold_count = freq_in [cycles/s] * 120ns * (1s / 1e9ns)
// Reduce 120/1e9 to 3/25e6 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
((freq_in * 3) / 25000000) + 1
};
assert!(sda_tx_hold_count <= lcnt - 2);
unsafe {
i2c.ic_fs_scl_hcnt
.write(|w| w.ic_fs_scl_hcnt().bits(hcnt as u16));
i2c.ic_fs_scl_lcnt
.write(|w| w.ic_fs_scl_lcnt().bits(lcnt as u16));
i2c.ic_fs_spklen.write(|w| {
w.ic_fs_spklen()
.bits(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 })
});
i2c.ic_sda_hold
2021-08-21 02:16:25 +10:00
.modify(|_r,w| w.ic_sda_tx_hold().bits(sda_tx_hold_count as u16));
}
i2c.ic_enable.write(|w| w.enable().enabled());
I2C { i2c, pins: (sda_pin, scl_pin) }
}
/// Releases the I2C peripheral and associated pins
pub fn free(self) -> ($I2CX, (Pin<Sda, FunctionI2C>, Pin<Scl, FunctionI2C>)) {
(self.i2c, self.pins)
}
}
impl<PINS> I2C<$I2CX, PINS> {
/// Number of bytes currently in the TX FIFO
#[inline]
fn tx_fifo_used(&self) -> u8 {
self.i2c.ic_txflr.read().txflr().bits()
}
/// Remaining capacity in the TX FIFO
#[inline]
fn tx_fifo_free(&self) -> u8 {
TX_FIFO_SIZE - self.tx_fifo_used()
}
/// TX FIFO is at capacity
#[inline]
fn tx_fifo_full(&self) -> bool {
self.tx_fifo_free() == 0
}
}
impl<PINS> Write for I2C<$I2CX, PINS> {
type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
// TODO support transfers of more than 255 bytes
if (bytes.len() > 255 || bytes.len() == 0) {
return Err(Error::InvalidWriteBufferLength(bytes.len()));
} else if addr >= 0x80 {
return Err(Error::AddressOutOfRange(addr));
} else if i2c_reserved_addr(addr) {
return Err(Error::AddressReserved(addr));
}
self.i2c.ic_enable.write(|w| w.enable().disabled());
self.i2c
.ic_tar
.write(|w| unsafe { w.ic_tar().bits(addr as u16) });
self.i2c.ic_enable.write(|w| w.enable().enabled());
let mut abort = false;
let mut abort_reason = 0;
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
self.i2c.ic_data_cmd.write(|w| {
if last {
w.stop().enable();
} else {
w.stop().disable();
}
unsafe { w.dat().bits(*byte) }
});
// Wait until the transmission of the address/data from the internal
// shift register has completed. For this to function correctly, the
// TX_EMPTY_CTRL flag in IC_CON must be set. The TX_EMPTY_CTRL flag
// was set in i2c_init.
while self.i2c.ic_raw_intr_stat.read().tx_empty().is_inactive() {}
abort_reason = self.i2c.ic_tx_abrt_source.read().bits();
if abort_reason != 0 {
// Note clearing the abort flag also clears the reason, and
// this instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
self.i2c.ic_clr_tx_abrt.read().clr_tx_abrt();
abort = true;
}
if abort || last {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while self.i2c.ic_raw_intr_stat.read().stop_det().is_inactive() {}
self.i2c.ic_clr_stop_det.read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort condition.
// Note also the hardware clears RX FIFO as well as TX on abort,
// ecause we set hwparam IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
if abort {
break;
}
}
if abort {
Err(Error::Abort(abort_reason))
} else {
Ok(())
}
}
}
impl<PINS> WriteRead for I2C<$I2CX, PINS> {
type Error = Error;
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
// TODO support transfers of more than 255 bytes
if (bytes.len() > 255 || bytes.len() == 0) {
return Err(Error::InvalidWriteBufferLength(bytes.len()));
} else if (buffer.len() > 255 || buffer.len() == 0) {
return Err(Error::InvalidReadBufferLength(buffer.len()));
} else if addr >= 0x80 {
return Err(Error::AddressOutOfRange(addr));
} else if i2c_reserved_addr(addr) {
return Err(Error::AddressReserved(addr));
}
self.i2c.ic_enable.write(|w| w.enable().disabled());
self.i2c
.ic_tar
.write(|w| unsafe { w.ic_tar().bits(addr as u16) });
self.i2c.ic_enable.write(|w| w.enable().enabled());
let mut abort = false;
let mut abort_reason = 0;
for byte in bytes {
self.i2c.ic_data_cmd.write(|w| {
w.stop().disable();
unsafe { w.dat().bits(*byte) }
});
// Wait until the transmission of the address/data from the internal
// shift register has completed. For this to function correctly, the
// TX_EMPTY_CTRL flag in IC_CON must be set. The TX_EMPTY_CTRL flag
// was set in i2c_init.
while self.i2c.ic_raw_intr_stat.read().tx_empty().is_inactive() {}
abort_reason = self.i2c.ic_tx_abrt_source.read().bits();
if abort_reason != 0 {
// Note clearing the abort flag also clears the reason, and
// this instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
self.i2c.ic_clr_tx_abrt.read().clr_tx_abrt();
abort = true;
}
if abort {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while self.i2c.ic_raw_intr_stat.read().stop_det().is_inactive() {}
self.i2c.ic_clr_stop_det.read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort condition.
// Note also the hardware clears RX FIFO as well as TX on abort,
// ecause we set hwparam IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
if abort {
break;
}
}
if abort {
return Err(Error::Abort(abort_reason));
}
let buffer_len = buffer.len();
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == buffer_len - 1;
// wait until there is space in the FIFO to write the next byte
while self.tx_fifo_full() {}
self.i2c.ic_data_cmd.write(|w| {
if first {
w.restart().enable();
} else {
w.restart().disable();
}
if last {
w.stop().enable();
} else {
w.stop().disable();
}
w.cmd().read()
});
while !abort && self.i2c.ic_rxflr.read().bits() == 0 {
abort_reason = self.i2c.ic_tx_abrt_source.read().bits();
abort = self.i2c.ic_clr_tx_abrt.read().bits() > 0;
}
if abort {
break;
}
*byte = self.i2c.ic_data_cmd.read().dat().bits();
}
if abort {
Err(Error::Abort(abort_reason))
} else {
Ok(())
}
}
}
impl<PINS> Read for I2C<$I2CX, PINS> {
type Error = Error;
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> {
// TODO support transfers of more than 255 bytes
if (buffer.len() > 255 || buffer.len() == 0) {
return Err(Error::InvalidReadBufferLength(buffer.len()));
} else if addr >= 0x80 {
return Err(Error::AddressOutOfRange(addr));
} else if i2c_reserved_addr(addr) {
return Err(Error::AddressReserved(addr));
}
self.i2c.ic_enable.write(|w| w.enable().disabled());
self.i2c
.ic_tar
.write(|w| unsafe { w.ic_tar().bits(addr as u16) });
self.i2c.ic_enable.write(|w| w.enable().enabled());
let mut abort = false;
let mut abort_reason = 0;
let lastindex = buffer.len() -1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// wait until there is space in the FIFO to write the next byte
while self.tx_fifo_full() {}
self.i2c.ic_data_cmd.write(|w| {
if first {
w.restart().enable();
} else {
w.restart().disable();
}
if last {
w.stop().enable();
} else {
w.stop().disable();
}
w.cmd().read()
});
while !abort && self.i2c.ic_rxflr.read().bits() == 0 {
abort_reason = self.i2c.ic_tx_abrt_source.read().bits();
abort = self.i2c.ic_clr_tx_abrt.read().bits() > 0;
}
if abort {
break;
}
*byte = self.i2c.ic_data_cmd.read().dat().bits();
}
if abort {
Err(Error::Abort(abort_reason))
} else {
Ok(())
}
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<PINS> eh1::Write for I2C<$I2CX, PINS> {
type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> {
Write::write(self, addr, bytes)
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<PINS> eh1::WriteRead for I2C<$I2CX, PINS> {
type Error = Error;
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
WriteRead::write_read(self, addr, bytes, buffer)
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<PINS> eh1::Read for I2C<$I2CX, PINS> {
type Error = Error;
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> {
Read::read(self, addr, buffer)
}
}
)+
}
}
hal! {
I2C0: (i2c0),
I2C1: (i2c1),
}