mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-11 04:51:31 +11:00
167 lines
5 KiB
Rust
167 lines
5 KiB
Rust
|
//! # Pico PIO PWM Blink Example
|
||
|
//!
|
||
|
//! Fades the LED on a Pico board using the PIO peripheral with an pwm program.
|
||
|
//!
|
||
|
//! This will fade in the LED attached to GP25, which is the pin the Pico
|
||
|
//! uses for the on-board LED.
|
||
|
//!
|
||
|
//! This example uses a few advance pio tricks such as side setting pins and instruction injection.
|
||
|
//!
|
||
|
//! See the `Cargo.toml` file for Copyright and license details. Except for the pio program which is subject to a different license.
|
||
|
|
||
|
#![no_std]
|
||
|
#![no_main]
|
||
|
|
||
|
use defmt::info;
|
||
|
use defmt_rtt as _;
|
||
|
// The macro for our start-up function
|
||
|
use rp_pico::entry;
|
||
|
|
||
|
// Time handling traits
|
||
|
use embedded_time::rate::*;
|
||
|
|
||
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||
|
// be linked)
|
||
|
use panic_halt as _;
|
||
|
|
||
|
// Pull in any important traits
|
||
|
use rp_pico::hal::prelude::*;
|
||
|
|
||
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||
|
// register access
|
||
|
use rp_pico::hal::pac;
|
||
|
|
||
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||
|
// higher-level drivers.
|
||
|
use rp_pico::hal;
|
||
|
|
||
|
// Import pio crates
|
||
|
use hal::pio::{PIOBuilder, Running, StateMachine, Tx, ValidStateMachine, SM0};
|
||
|
use pio::{InstructionOperands, OutDestination};
|
||
|
use pio_proc::pio_file;
|
||
|
|
||
|
/// Set pio pwm period
|
||
|
///
|
||
|
/// This uses a sneaky trick to set a second value besides the duty cycle.
|
||
|
/// We first write a value to the tx fifo. But instead of the normal instructions we
|
||
|
/// have stopped the state machine and inject our own instructions that move the written value to the ISR.
|
||
|
fn pio_pwm_set_period<T: ValidStateMachine>(
|
||
|
sm: StateMachine<(hal::pac::PIO0, SM0), Running>,
|
||
|
tx: &mut Tx<T>,
|
||
|
period: u32,
|
||
|
) -> StateMachine<(hal::pac::PIO0, SM0), Running> {
|
||
|
// To make sure the inserted instructions actually use our newly written value
|
||
|
// We first busy loop to empty the queue. (Which typically should be the case)
|
||
|
while !tx.is_empty() {}
|
||
|
|
||
|
let mut sm = sm.stop();
|
||
|
tx.write(period);
|
||
|
sm.exec_instruction(
|
||
|
InstructionOperands::PULL {
|
||
|
if_empty: false,
|
||
|
block: false,
|
||
|
}
|
||
|
.encode(),
|
||
|
);
|
||
|
sm.exec_instruction(
|
||
|
InstructionOperands::OUT {
|
||
|
destination: OutDestination::ISR,
|
||
|
bit_count: 32,
|
||
|
}
|
||
|
.encode(),
|
||
|
);
|
||
|
sm.start()
|
||
|
}
|
||
|
|
||
|
/// Set pio pwm duty cycle
|
||
|
///
|
||
|
/// The value written to the TX FIFO is used directly by the normal pio program
|
||
|
fn pio_pwm_set_level<T: ValidStateMachine>(tx: &mut Tx<T>, level: u32) {
|
||
|
// Write duty cycle to TX Fifo
|
||
|
tx.write(level);
|
||
|
}
|
||
|
|
||
|
/// Entry point to our bare-metal application.
|
||
|
///
|
||
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||
|
/// as soon as all global variables are initialised.
|
||
|
///
|
||
|
/// The function configures the RP2040 peripherals, then fades the LED in an
|
||
|
/// infinite loop.
|
||
|
#[entry]
|
||
|
fn main() -> ! {
|
||
|
// Grab our singleton objects
|
||
|
let mut pac = pac::Peripherals::take().unwrap();
|
||
|
let core = pac::CorePeripherals::take().unwrap();
|
||
|
|
||
|
// Set up the watchdog driver - needed by the clock setup code
|
||
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
||
|
|
||
|
// Configure the clocks
|
||
|
//
|
||
|
// The default is to generate a 125 MHz system clock
|
||
|
let clocks = hal::clocks::init_clocks_and_plls(
|
||
|
rp_pico::XOSC_CRYSTAL_FREQ,
|
||
|
pac.XOSC,
|
||
|
pac.CLOCKS,
|
||
|
pac.PLL_SYS,
|
||
|
pac.PLL_USB,
|
||
|
&mut pac.RESETS,
|
||
|
&mut watchdog,
|
||
|
)
|
||
|
.ok()
|
||
|
.unwrap();
|
||
|
|
||
|
// The single-cycle I/O block controls our GPIO pins
|
||
|
let sio = hal::Sio::new(pac.SIO);
|
||
|
|
||
|
// Set the pins up according to their function on this particular board
|
||
|
let pins = rp_pico::Pins::new(
|
||
|
pac.IO_BANK0,
|
||
|
pac.PADS_BANK0,
|
||
|
sio.gpio_bank0,
|
||
|
&mut pac.RESETS,
|
||
|
);
|
||
|
|
||
|
// The delay object lets us wait for specified amounts of time (in
|
||
|
// milliseconds)
|
||
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
||
|
|
||
|
let (mut pio0, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS);
|
||
|
|
||
|
// Create a pio program
|
||
|
let program = pio_file!("./examples/pwm.pio", select_program("pwm"),);
|
||
|
let installed = pio0.install(&program.program).unwrap();
|
||
|
|
||
|
// Set gpio25 to pio
|
||
|
let _led: hal::gpio::Pin<_, hal::gpio::FunctionPio0> = pins.led.into_mode();
|
||
|
let led_pin_id = 25;
|
||
|
|
||
|
// Build the pio program and set pin both for set and side set!
|
||
|
// We are running with the default divider which is 1 (max speed)
|
||
|
let (mut sm, _, mut tx) = PIOBuilder::from_program(installed)
|
||
|
.set_pins(led_pin_id, 1)
|
||
|
.side_set_pin_base(led_pin_id)
|
||
|
.build(sm0);
|
||
|
|
||
|
// Set pio pindir for gpio25
|
||
|
sm.set_pindirs([(led_pin_id, hal::pio::PinDir::Output)]);
|
||
|
|
||
|
// Start state machine
|
||
|
let sm = sm.start();
|
||
|
|
||
|
// Set period
|
||
|
pio_pwm_set_period(sm, &mut tx, u16::MAX as u32 - 1);
|
||
|
|
||
|
// Loop forever and adjust duty cycle to make te led brighter
|
||
|
let mut level = 0;
|
||
|
loop {
|
||
|
info!("Level = {}", level);
|
||
|
pio_pwm_set_level(&mut tx, level * level);
|
||
|
level = (level + 1) % 256;
|
||
|
delay.delay_ms(10);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// End of file
|