rp-hal-boards/rp2040-hal/src/pll.rs

256 lines
6.5 KiB
Rust
Raw Normal View History

2021-04-25 18:12:38 +10:00
//! Phase-Locked Loops (PLL)
// See [Chapter 2 Section 18](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
use core::{
convert::{
Infallible,
TryFrom,
TryInto
2021-04-25 18:12:38 +10:00
},
marker::PhantomData,
ops::{
RangeInclusive,
Range,
Deref
}
};
use embedded_time::{
fixed_point::FixedPoint,
rate::{
Hertz,
Generic,
Rate
2021-04-25 18:12:38 +10:00
}
};
use nb::Error::WouldBlock;
/// State of the PLL
pub trait State {}
/// PLL is disabled.
pub struct Disabled;
/// PLL is configured, started and locking into its designated frequency.
pub struct Locking {
2021-04-25 18:12:38 +10:00
post_div1: u8,
post_div2: u8
}
/// PLL is locked : it delivers a steady frequency.
pub struct Locked;
impl State for Disabled {}
impl State for Locked {}
impl State for Locking {}
/// Trait to handle both underlying devices from the PAC (PLL_SYS & PLL_USB)
pub trait PhaseLockedLoopDevice: Deref<Target = rp2040_pac::pll_sys::RegisterBlock> {}
impl PhaseLockedLoopDevice for rp2040_pac::PLL_SYS {}
impl PhaseLockedLoopDevice for rp2040_pac::PLL_USB {}
/// A PLL.
pub struct PhaseLockedLoop<S: State, D: PhaseLockedLoopDevice> {
device: D,
state: S
}
impl<S: State, D: PhaseLockedLoopDevice> PhaseLockedLoop<S, D> {
fn transition<To: State>(self, state: To) -> PhaseLockedLoop<To, D> {
PhaseLockedLoop {
device: self.device,
state: state
}
}
/// Releases the underlying device.
pub fn free(self) -> D{
self.device
}
}
/// Error type for the PLL module.
/// See Chapter 2, Section 18 §2 for details on constraints triggering these errors.
pub enum Error {
/// Proposed VCO frequency is out of range.
VCOFreqOutOfRange,
/// Feedback Divider value is out of range.
FBDIVOutOfRange,
/// Post Divider value is out of range.
PostDivOutOfRage,
/// Reference Frequency is out of range.
RefFreqOutOfRange,
/// Bad argument : overflows, bad conversion, ...
BadArgument
}
/// Parameters for a PLL.
pub struct PLLConfig<R: Rate> {
/// Voltage Controlled Oscillator frequency.
pub vco_freq: R,
/// Reference divider
pub refdiv: u8,
/// Post Divider 1
pub post_div1: u8,
/// Post Divider 2
pub post_div2: u8
}
/// Common configs for the two PLLs. Both assume the XOSC is cadenced at 12MHz !
/// See Chapter 2, Section 18, §2
pub mod common_configs {
use super::PLLConfig;
use embedded_time::rate::Megahertz;
/// Default, nominal configuration for PLL_SYS
pub const PLL_SYS_125MHZ: PLLConfig<Megahertz> = PLLConfig {
vco_freq: Megahertz(1500),
refdiv: 1,
post_div1: 6,
post_div2: 2
};
/// Default, nominal configuration for PLL_USB.
pub const PLL_USB_48MHZ: PLLConfig<Megahertz> = PLLConfig {
vco_freq: Megahertz(480),
refdiv: 1,
post_div1: 5,
post_div2: 2
};
}
2021-04-25 18:12:38 +10:00
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Disabled, D> {
/// Instantiates a new Phase-Locked-Loop device.
pub fn new(dev: D) -> PhaseLockedLoop<Disabled, D> {
PhaseLockedLoop {
state: Disabled,
device: dev,
}
}
2021-04-25 18:12:38 +10:00
/// Configures and starts the PLL : it switches to Locking state.
2021-04-26 03:45:45 +10:00
pub fn initialize<R: Rate>(self, xosc_frequency: Generic<u32>, config: PLLConfig<R>) -> Result<PhaseLockedLoop<Locking, D>, Error> where R: Into<Hertz<u64>>{
2021-04-25 18:12:38 +10:00
const VCO_FREQ_RANGE: RangeInclusive<Hertz<u32>> = Hertz(400_000_000)..=Hertz(1600_000_000);
const POSTDIV_RANGE: Range<u8> = 1..7;
const FBDIV_RANGE: Range<u16> = 16..320;
2021-04-25 18:12:38 +10:00
2021-04-26 03:45:45 +10:00
//First we convert our rate to Hertz<u64> as all other rates can be converted to that.
let vco_freq: Hertz<u64> = config.vco_freq.into();
//Then we try to downscale to u32.
let vco_freq: Hertz<u32> = vco_freq.try_into().map_err(|_| Error::BadArgument)?;
2021-04-25 18:12:38 +10:00
if !VCO_FREQ_RANGE.contains(&vco_freq) {
return Err(Error::VCOFreqOutOfRange)
}
if !POSTDIV_RANGE.contains(&config.post_div1) || !POSTDIV_RANGE.contains(&config.post_div2) {
2021-04-25 18:12:38 +10:00
return Err(Error::PostDivOutOfRage)
}
let ref_freq_range: Range<Hertz<u32>> = Hertz(5_000_000)..vco_freq.div(16);
2021-04-25 18:12:38 +10:00
// Turn off PLL in case it is already running
self.device.pwr.reset();
self.device.fbdiv_int.reset();
let ref_freq_hz = Hertz::<u32>::try_from(xosc_frequency).
map_err(|_| Error::BadArgument)?.
checked_div(&(config.refdiv as u32)).
2021-04-25 18:12:38 +10:00
ok_or(Error::BadArgument)?;
if !ref_freq_range.contains(&ref_freq_hz) {
return Err(Error::RefFreqOutOfRange)
}
self.device.cs.write(|w| unsafe {
w.refdiv().bits(config.refdiv);
2021-04-25 18:12:38 +10:00
w
});
let fbdiv = vco_freq.checked_div(ref_freq_hz.integer()).
ok_or(Error::BadArgument)?;
let fbdiv: u16 = (*fbdiv.integer()).try_into().map_err(|_| Error::BadArgument)?;
2021-04-25 18:12:38 +10:00
if !FBDIV_RANGE.contains(&fbdiv) {
return Err(Error::FBDIVOutOfRange)
}
self.device.fbdiv_int.write(|w| unsafe {
w.fbdiv_int().bits(fbdiv);
w
});
// Turn on PLL
self.device.pwr.modify(|_,w| {
w.pd().clear_bit();
w.vcopd().clear_bit();
2021-04-25 18:12:38 +10:00
w
});
let post_div1 = config.post_div1;
let post_div2 = config.post_div2;
2021-04-25 18:12:38 +10:00
Ok(self.transition(Locking {
post_div1, post_div2
}))
}
}
/// A token that's given when the PLL is properly locked, so we can safely transition to the next state.
pub struct LockedPLLToken<D> {
_private: PhantomData<D>
}
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Locking, D> {
/// Awaits locking of the PLL.
pub fn await_lock(&self) -> nb::Result<LockedPLLToken<D>, Infallible> {
if self.device.cs.read().lock().bit_is_clear() {
return Err(WouldBlock);
}
Ok(LockedPLLToken {
_private: PhantomData
})
}
/// Exchanges a token for a Locked PLL.
pub fn get_locked(self, _token: LockedPLLToken<D>) -> PhaseLockedLoop<Locked, D> {
// Set up post dividers
self.device.prim.write(|w| unsafe {
w.postdiv1().bits(self.state.post_div1);
w.postdiv2().bits(self.state.post_div2);
w
});
// Turn on post divider
self.device.pwr.modify(|_,w| {
w.postdivpd().clear_bit();
2021-04-25 18:12:38 +10:00
w
});
self.transition(Locked)
}
}