mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-11 21:11:31 +11:00
Merge pull request #125 from 42-technology-ltd/add_sparkfun_to_readme
Add README to Pro Micro RP2040 BSP.
This commit is contained in:
commit
1dff38551e
13
README.md
13
README.md
|
@ -128,7 +128,7 @@ a [Pimoroni Pico Lipo 16MB] - a board with USB-C, STEMMA QT/Qwiic connectors,
|
|||
plus a Li-Po battery charging circuit.
|
||||
|
||||
This crate includes the [rp2040-hal], but also configures each pin of the
|
||||
RP2040 chip according to how it is connected up on the Pico Liop.
|
||||
RP2040 chip according to how it is connected up on the Pico Lipo.
|
||||
|
||||
Note that if you use this crate the compiler will expect the full 16MB flash
|
||||
space, and so it may not work if you only have the 4MB variant.
|
||||
|
@ -136,6 +136,17 @@ space, and so it may not work if you only have the 4MB variant.
|
|||
[Pimoroni Pico Lipo 16MB]: https://shop.pimoroni.com/products/pimoroni-pico-lipo?variant=39335427080275
|
||||
[pico_lipo_16mb]: https://github.com/rp-rs/rp-hal/tree/main/boards/pico_lipo_16mb
|
||||
|
||||
### [pro_micro_rp2040] - Board Support for the [Sparkfun Pro Micro RP2040]
|
||||
|
||||
You should include this crate if you are writing code that you want to run on
|
||||
a [Sparkfun Pro Micro RP2040] - a smaller RP2040 board with USB-C and a WS2812B addressable LED.
|
||||
|
||||
This crate includes the [rp2040-hal], but also configures each pin of the
|
||||
RP2040 chip according to how it is connected up on the Pro Micro RP2040.
|
||||
|
||||
[Sparkfun Pro Micro RP2040]: https://www.sparkfun.com/products/18288
|
||||
[pro_micro_rp2040]: https://github.com/rp-rs/rp-hal/tree/main/boards/pro_micro_rp2040
|
||||
|
||||
<!-- ROADMAP -->
|
||||
## Roadmap
|
||||
|
||||
|
|
94
boards/pro_micro_rp2040/README.md
Normal file
94
boards/pro_micro_rp2040/README.md
Normal file
|
@ -0,0 +1,94 @@
|
|||
# [pro_micro_rp2040] - Board Support for the [Sparkfun Pro Micro RP2040]
|
||||
|
||||
You should include this crate if you are writing code that you want to run on
|
||||
a [Sparkfun Pro Micro RP2040] - a smaller [RP2040][Raspberry Pi Silicon RP2040] board with USB-C and a WS2812B addressable LED.
|
||||
|
||||
This crate includes the [rp2040-hal], but also configures each pin of the
|
||||
RP2040 chip according to how it is connected up on the Pro Micro RP2040.
|
||||
|
||||
[Sparkfun Pro Micro RP2040]: https://www.sparkfun.com/products/18288
|
||||
[pro_micro_rp2040]: https://github.com/rp-rs/rp-hal/tree/main/boards/pro_micro_rp2040
|
||||
[rp2040-hal]: https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal
|
||||
[Raspberry Pi Silicon RP2040]: https://www.raspberrypi.org/products/rp2040/
|
||||
|
||||
## Using
|
||||
|
||||
To use this crate, your `Cargo.toml` file should contain:
|
||||
|
||||
```toml
|
||||
pro_micro_rp2040 = { git = "https://github.com/rp-rs/rp-hal.git" }
|
||||
```
|
||||
|
||||
In your program, you will need to call `pro_micro_rp2040::Pins::new` to create
|
||||
a new `Pins` structure. This will set up all the GPIOs for any on-board
|
||||
devices. See the [examples](./examples) folder for more details.
|
||||
|
||||
## Examples
|
||||
|
||||
### General Instructions
|
||||
|
||||
To compile an example, clone the _rp-hal_ repository and run:
|
||||
|
||||
```console
|
||||
rp-hal/boards/pro_micro_rp2040 $ cargo build --release --example <name>
|
||||
```
|
||||
|
||||
You will get an ELF file called
|
||||
`./target/thumbv6m-none-eabi/release/examples/<name>`, where the `target`
|
||||
folder is located at the top of the _rp-hal_ repository checkout. Normally
|
||||
you would also need to specify `--target=thumbv6m-none-eabi` but when
|
||||
building examples from this git repository, that is set as the default.
|
||||
|
||||
If you want to convert the ELF file to a UF2 and automatically copy it to the
|
||||
USB drive exported by the RP2040 bootloader, simply boot your board into
|
||||
bootloader mode and run:
|
||||
|
||||
```console
|
||||
rp-hal/boards/pro_micro_rp2040 $ cargo run --release --example <name>
|
||||
```
|
||||
|
||||
If you get an error about not being able to find `elf2uf2-rs`, try:
|
||||
|
||||
```console
|
||||
$ cargo install elf2uf2-rs, then repeating the `cargo run` command above.
|
||||
```
|
||||
|
||||
### [Rainbow](./examples/pro_micro_rainbow.rs)
|
||||
|
||||
This example will display a colour-wheel rainbow effect on the on-board LED.
|
||||
|
||||
## Contributing
|
||||
|
||||
Contributions are what make the open source community such an amazing place to
|
||||
be learn, inspire, and create. Any contributions you make are **greatly
|
||||
appreciated**.
|
||||
|
||||
The steps are:
|
||||
|
||||
1. Fork the Project by clicking the 'Fork' button at the top of the page.
|
||||
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
|
||||
3. Make some changes to the code or documentation.
|
||||
4. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
|
||||
5. Push to the Feature Branch (`git push origin feature/AmazingFeature`)
|
||||
6. Create a [New Pull Request](https://github.com/rp-rs/rp-hal/pulls)
|
||||
7. An admin will review the Pull Request and discuss any changes that may be required.
|
||||
8. Once everyone is happy, the Pull Request can be merged by an admin, and your work is part of our project!
|
||||
|
||||
## Code of Conduct
|
||||
|
||||
Contribution to this crate is organized under the terms of the [Rust Code of
|
||||
Conduct][CoC], and the maintainer of this crate, the [rp-rs team], promises
|
||||
to intervene to uphold that code of conduct.
|
||||
|
||||
[CoC]: CODE_OF_CONDUCT.md
|
||||
[rp-rs team]: https://github.com/orgs/rp-rs/teams/rp-rs
|
||||
|
||||
## License
|
||||
|
||||
The contents of this repository are dual-licensed under the _MIT OR Apache
|
||||
2.0_ License. That means you can chose either the MIT licence or the
|
||||
Apache-2.0 when you re-use this code. See `MIT` or `APACHE2.0` for more
|
||||
information on each specific licence.
|
||||
|
||||
Any submissions to this project (e.g. as Pull Requests) must be made available
|
||||
under these terms.
|
|
@ -1,4 +1,10 @@
|
|||
//! Cycles colors on on the on board addressable LED.
|
||||
//! # Rainbow Example for the Pro Micro RP2040
|
||||
//!
|
||||
//! Runs a rainbow-effect colour wheel on the on-board LED.
|
||||
//!
|
||||
//! Uses the `ws2812_pio` driver to control the LED, which in turns uses the
|
||||
//! RP2040's PIO block.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
|
@ -22,12 +28,23 @@ use pro_micro_rp2040::{
|
|||
use smart_leds::{brightness, SmartLedsWrite, RGB8};
|
||||
use ws2812_pio::Ws2812;
|
||||
|
||||
/// The linker will place this boot block at the start of our program image.
|
||||
/// We need this to help the ROM bootloader get our code up and running.
|
||||
#[link_section = ".boot2"]
|
||||
#[used]
|
||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this
|
||||
/// function as soon as all global variables are initialised.
|
||||
///
|
||||
/// The function configures the RP2040 peripherals, then the LED, then runs
|
||||
/// the colour wheel in an infinite loop.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Configure the RP2040 peripherals
|
||||
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
let mut watchdog = Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
|
@ -44,16 +61,21 @@ fn main() -> ! {
|
|||
.unwrap();
|
||||
|
||||
let sio = Sio::new(pac.SIO);
|
||||
|
||||
let pins = pro_micro_rp2040::Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
|
||||
let _led: Pin<_, FunctionPio0> = pins.led.into_mode();
|
||||
|
||||
let timer = Timer::new(pac.TIMER);
|
||||
let mut delay = timer.count_down();
|
||||
|
||||
// Configure the addressable LED
|
||||
|
||||
let mut ws = Ws2812::new(
|
||||
25,
|
||||
pac.PIO0,
|
||||
|
@ -62,6 +84,8 @@ fn main() -> ! {
|
|||
timer.count_down(),
|
||||
);
|
||||
|
||||
// Infinite colour wheel loop
|
||||
|
||||
let mut n: u8 = 128;
|
||||
loop {
|
||||
ws.write(brightness(once(wheel(n)), 32)).unwrap();
|
||||
|
@ -71,17 +95,22 @@ fn main() -> ! {
|
|||
let _ = nb::block!(delay.wait());
|
||||
}
|
||||
}
|
||||
/// Input a value 0 to 255 to get a color value
|
||||
/// The colours are a transition r - g - b - back to r.
|
||||
|
||||
/// Convert a number from `0..=255` to an RGB color triplet.
|
||||
///
|
||||
/// The colours are a transition from red, to green, to blue and back to red.
|
||||
fn wheel(mut wheel_pos: u8) -> RGB8 {
|
||||
wheel_pos = 255 - wheel_pos;
|
||||
if wheel_pos < 85 {
|
||||
return (255 - wheel_pos * 3, 0, wheel_pos * 3).into();
|
||||
}
|
||||
if wheel_pos < 170 {
|
||||
// No green in this sector - red and blue only
|
||||
(255 - (wheel_pos * 3), 0, wheel_pos * 3).into()
|
||||
} else if wheel_pos < 170 {
|
||||
// No red in this sector - green and blue only
|
||||
wheel_pos -= 85;
|
||||
return (0, wheel_pos * 3, 255 - wheel_pos * 3).into();
|
||||
}
|
||||
(0, wheel_pos * 3, 255 - (wheel_pos * 3)).into()
|
||||
} else {
|
||||
// No blue in this sector - red and green only
|
||||
wheel_pos -= 170;
|
||||
(wheel_pos * 3, 255 - wheel_pos * 3, 0).into()
|
||||
(wheel_pos * 3, 255 - (wheel_pos * 3), 0).into()
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue