Store pins together in a tuple to reduce boilerplate

This commit is contained in:
9names 2022-02-15 20:17:18 +11:00
parent 44a9b0f541
commit 35875c8756

View file

@ -22,8 +22,6 @@
#![no_std]
#![no_main]
use core::cell::RefCell;
use cortex_m::interrupt::Mutex;
// The macro for our start-up function
use cortex_m_rt::entry;
@ -44,27 +42,43 @@ use embedded_hal::digital::v2::ToggleableOutputPin;
// Our interrupt macro
use hal::pac::interrupt;
// Some short-cuts to useful types
use core::cell::RefCell;
use cortex_m::interrupt::Mutex;
use rp2040_hal::gpio;
// The GPIO interrupt type we're going to generate
use rp2040_hal::gpio::Interrupt::EdgeLow;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
use rp2040_hal::gpio;
use rp2040_hal::gpio::Interrupt::EdgeLow;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
// Pin types quickly become very long - make some type aliases using `type` to help with that
// This also makes it super quick to change pin numbers!
// Pin types quickly become very long!
// We'll create some type aliases using `type` to help with that
/// This pin will be our output - it will drive an LED if you run this on a Pico
type LedPin = gpio::Pin<gpio::bank0::Gpio25, gpio::PushPullOutput>;
/// This pin will be our interrupt source.
/// It will trigger an interrupt if pulled to ground (via a switch or jumper wire)
type ButtonPin = gpio::Pin<gpio::bank0::Gpio26, gpio::PullUpInput>;
/// This how we transfer our Led and Button pins into the Interrupt Handler
static GLOBAL_LED: Mutex<RefCell<Option<LedPin>>> = Mutex::new(RefCell::new(None));
static GLOBAL_BUTTON: Mutex<RefCell<Option<ButtonPin>>> = Mutex::new(RefCell::new(None));
/// Since we're always accessing these pins together we'll store them in a tuple.
/// Giving this tuple a type alias means we won't need to use () when putting them
/// inside an Option. That will be easier to read.
type LedAndButton = (LedPin, ButtonPin);
/// This how we transfer our Led and Button pins into the Interrupt Handler.
/// We'll have the option hold both using the LedAndButton type.
/// This will make it a bit easier to unpack them later.
static GLOBAL_PINS: Mutex<RefCell<Option<LedAndButton>>> = Mutex::new(RefCell::new(None));
/// Entry point to our bare-metal application.
///
@ -110,21 +124,17 @@ fn main() -> ! {
// since the variable we're pushing it into has that type
let led = pins.gpio25.into_mode();
// Now we give away that GPIO pin, via the variable
// `GLOBAL_LED`. We can no longer access this pin from this main thread.
cortex_m::interrupt::free(|cs| {
GLOBAL_LED.borrow(cs).replace(Some(led));
});
// Set up the GPIO pin that will be our input
let in_pin = pins.gpio26.into_mode();
// Trigger on the 'falling edge' of the input pin.
// This will happen as the button is being pressed
in_pin.set_interrupt_enabled(EdgeLow, true);
// Give away our button GPIO pin too
// Give away our pins by moving them into the `GLOBAL_PINS` variable.
// We won't need to access them in the main thread again
cortex_m::interrupt::free(|cs| {
GLOBAL_BUTTON.borrow(cs).replace(Some(in_pin));
GLOBAL_PINS.borrow(cs).replace(Some((led, in_pin)));
});
// Unmask the IO_BANK0 IRQ so that the NVIC interrupt controller
@ -138,8 +148,8 @@ fn main() -> ! {
loop {
// interrupts handle everything else in this example.
// if we wanted low power we could go to sleep. to
// keep this example simple we'll just execute a nop.
// the nop (No Operation) instruction does nothing,
// keep this example simple we'll just execute a `nop`.
// the `nop` (No Operation) instruction does nothing,
// but if we have no code here clippy would complain.
cortex_m::asm::nop();
}
@ -147,31 +157,27 @@ fn main() -> ! {
#[interrupt]
fn IO_IRQ_BANK0() {
static mut LED: Option<LedPin> = None;
static mut BUTTON: Option<ButtonPin> = None;
static mut LED_AND_BUTTON: Option<LedAndButton> = None;
// This is one-time lazy initialisation. We steal the variables given to us
// via `GLOBAL_LED` and `GLOBAL_BUTTON`.
if LED.is_none() {
// via `GLOBAL_PINS`.
if LED_AND_BUTTON.is_none() {
cortex_m::interrupt::free(|cs| {
*LED = GLOBAL_LED.borrow(cs).take();
});
}
if BUTTON.is_none() {
cortex_m::interrupt::free(|cs| {
*BUTTON = GLOBAL_BUTTON.borrow(cs).take();
*LED_AND_BUTTON = GLOBAL_PINS.borrow(cs).take();
});
}
// Need to check if our Option<LedPin> contains our pin
if let Some(led) = LED {
// Need to check if our Option<LedAndButtonPins> contains our pins
if let Some(gpios) = LED_AND_BUTTON {
// borrow led and button by *destructuring* the tuple
// these will be of type `&mut LedPin` and `&mut ButtonPin`, so we don't have
// to move them back into the static after we use them
let (led, button) = gpios;
// toggle can't fail, but the embedded-hal traits always allow for it
// we can discard the return value by assigning it to an unnamed variable
let _ = led.toggle();
}
// Need to check if our Option<ButtonPin> contains our pin
if let Some(button) = BUTTON {
// Our interrupt doesn't clear itself.
// Do that now so we don't immediately jump back to this interrupt handler.
button.clear_interrupt(EdgeLow);