Polishing the PWM and USB examples.

This commit is contained in:
Jonathan Pallant (42 Technology) 2021-09-21 10:47:43 +01:00
parent 3e036cf9b0
commit 35f001f61d
5 changed files with 237 additions and 89 deletions

View file

@ -1,4 +1,4 @@
//! # Pico Blinky
//! # Pico Blinky Example
//!
//! Blinks the LED on a Pico board.
//!

View file

@ -1,4 +1,4 @@
//! # Pico Countdown Blinky
//! # Pico Countdown Blinky Example
//!
//! Blinks the LED on a Pico board, using an RP2040 Timer in Count-down mode.
//!

View file

@ -1,36 +1,74 @@
//! Toggle LED based on GPIO input
//! # Pico GPIO In/Out Example
//!
//! This will control an LED on GP25 based on a button hooked up to GP15. The button should be tied
//! to ground, as the input pin is pulled high internally by this example. When the button is
//! pressed, the LED will turn off.
//! Toggles the LED based on GPIO input.
//!
//! This will control an LED on GP25 based on a button hooked up to GP15. The
//! button should cause the line to be grounded, as the input pin is pulled high
//! internally by this example. When the button is pressed, the LED will turn
//! off.
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
use embedded_hal::digital::v2::{InputPin, OutputPin};
use hal::pac;
use hal::sio::Sio;
use panic_halt as _;
use pico::{hal, Pins};
// GPIO traits
use embedded_hal::digital::v2::{InputPin, OutputPin};
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use pico::hal;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then just reads the button
/// and sets the LED appropriately.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let sio = Sio::new(pac.SIO);
let pins = Pins::new(
// Note - we don't do any clock set-up in this example. The RP2040 will run
// at it's default clock speed.
// The single-cycle I/O block controls our GPIO pins
let sio = hal::sio::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = pico::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// Our LED output
let mut led_pin = pins.led.into_push_pull_output();
// Our button input
let button_pin = pins.bootsel.into_pull_down_input();
// Run forever, setting the LED according to the button
loop {
if button_pin.is_low().unwrap() {
led_pin.set_high().unwrap();
@ -39,3 +77,5 @@ fn main() -> ! {
}
}
}
// End of file

View file

@ -1,40 +1,72 @@
//! Blinks the LED on a Pico board
//! # Pico PWM Blink Example
//!
//! This will fade in/out the LED attached to GP25, which is the pin the Pico uses for the on-board LED.
//! Fades the LED on a Pico board using the PWM peripheral.
//!
//! This will fade in/out the LED attached to GP25, which is the pin the Pico
//! uses for the on-board LED.
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
use embedded_hal::PwmPin;
use embedded_time::fixed_point::FixedPoint;
use panic_halt as _;
use pico::{
hal::{
clocks::{init_clocks_and_plls, Clock},
pac,
pwm::*,
watchdog::Watchdog,
},
Pins, XOSC_CRYSTAL_FREQ,
};
use rp2040_hal::sio::Sio;
// GPIO traits
use embedded_hal::PwmPin;
// Time handling traits
use embedded_time::rate::*;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Pull in any important traits
use pico::hal::prelude::*;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use pico::hal;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
// The minimum PWM value (i.e. LED brightness) we want
const LOW: u16 = 0;
// The maximum PWM value (i.e. LED brightness) we want
const HIGH: u16 = 25000;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then fades the LED in an
/// infinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
let clocks = init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
// Configure the clocks
//
// Our default is 12 MHz crystal input, 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
pico::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
@ -45,34 +77,42 @@ fn main() -> ! {
.ok()
.unwrap();
let sio = Sio::new(pac.SIO);
let pins = Pins::new(
// The single-cycle I/O block controls our GPIO pins
let sio = hal::sio::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = pico::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// Init PWMs
let mut pwm_slices = Slices::new(pac.PWM, &mut pac.RESETS);
let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
// Configure PWM4
let pwm = &mut pwm_slices.pwm4;
pwm.set_ph_correct();
pwm.enable();
// Use B channel (which outputs to GPIO 25)
// Output channel B on PWM4 to the LED pin
let channel = &mut pwm.channel_b;
channel.output_to(pins.led);
// Infinite loop, fading LED up and down
loop {
// Ramp brightness up
for i in (LOW..=HIGH).skip(100) {
delay.delay_us(8);
channel.set_duty(i);
}
// Ramp brightness down
for i in (LOW..=HIGH).rev().skip(100) {
delay.delay_us(8);
channel.set_duty(i);
@ -81,3 +121,5 @@ fn main() -> ! {
delay.delay_ms(500);
}
}
// End of file

View file

@ -1,49 +1,86 @@
//! Creates a USB Serial device on a Pico board, with the USB driver running in the USB interrupt
//! # Pico USB Serial (with Interrupts) Example
//!
//! This will create a USB Serial device echoing anything it receives converting to caps the ASCII
//! alphabetical caracters.
//! Creates a USB Serial device on a Pico board, with the USB driver running in
//! the USB interrupt.
//!
//! This will create a USB Serial device echoing anything it receives. Incoming
//! ASCII characters are converted to upercase, so you can tell it is working
//! and not just local-echo!
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
use crate::pac::interrupt;
// The macro for our start-up function
use cortex_m_rt::entry;
// The macro for marking our interrupt functions
use pico::hal::pac::interrupt;
// GPIO traits
use embedded_hal::digital::v2::OutputPin;
// Time handling traits
use embedded_time::rate::*;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
use pico::{
hal::{
self,
clocks::{init_clocks_and_plls, Clock},
pac,
sio::Sio,
usb::UsbBus,
watchdog::Watchdog,
},
XOSC_CRYSTAL_FREQ,
};
// Pull in any important traits
use pico::hal::prelude::*;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use pico::hal;
// USB Device support
use usb_device::{class_prelude::*, prelude::*};
// USB Communications Class Device support
use usbd_serial::SerialPort;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
// Static data so that it can be accessed in both main and interrupt context
static mut USB_DEVICE: Option<UsbDevice<UsbBus>> = None;
static mut USB_BUS: Option<UsbBusAllocator<UsbBus>> = None;
static mut USB_SERIAL: Option<SerialPort<UsbBus>> = None;
static mut SAID_HELLO: bool = false;
/// The USB Device Driver (shared with the interrupt).
static mut USB_DEVICE: Option<UsbDevice<hal::usb::UsbBus>> = None;
// Blinky-related imports, not needed for USB
use embedded_hal::digital::v2::OutputPin;
use embedded_time::rate::*;
use pico::Pins;
/// The USB Bus Driver (shared with the interrupt).
static mut USB_BUS: Option<UsbBusAllocator<hal::usb::UsbBus>> = None;
/// The USB Serial Device Driver (shared with the interrupt).
static mut USB_SERIAL: Option<SerialPort<hal::usb::UsbBus>> = None;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then blinks the LED in an
/// infinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
let core = pac::CorePeripherals::take().unwrap();
let clocks = init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// Our default is 12 MHz crystal input, 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
pico::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
@ -54,7 +91,7 @@ fn main() -> ! {
.ok()
.unwrap();
let usb_bus = UsbBusAllocator::new(UsbBus::new(
let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new(
pac.USBCTRL_REGS,
pac.USBCTRL_DPRAM,
clocks.usb_clock,
@ -62,6 +99,7 @@ fn main() -> ! {
&mut pac.RESETS,
));
unsafe {
// Note (safety): This is safe as interrupts haven't been started yet
USB_BUS = Some(usb_bus);
}
@ -71,6 +109,7 @@ fn main() -> ! {
}
let usb_dev = UsbDeviceBuilder::new(
// Note (safety): This is safe as interrupts haven't been started yet
unsafe { USB_BUS.as_ref().unwrap() },
UsbVidPid(0x16c0, 0x27dd),
)
@ -80,6 +119,7 @@ fn main() -> ! {
.device_class(2) // from: https://www.usb.org/defined-class-codes
.build();
unsafe {
// Note (safety): This is safe as interrupts haven't been started yet
USB_DEVICE = Some(usb_dev);
}
@ -88,20 +128,28 @@ fn main() -> ! {
pac::NVIC::unmask(hal::pac::Interrupt::USBCTRL_IRQ);
};
// No more USB code after this point in main!
// We can do anything we want in here since USB is handled
// in the interrupt - let's blink an LED.
let core = pac::CorePeripherals::take().unwrap();
// No more USB code after this point in main! We can do anything we want in
// here since USB is handled in the interrupt - let's blink an LED!
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
let sio = Sio::new(pac.SIO);
let pins = Pins::new(
// The single-cycle I/O block controls our GPIO pins
let sio = hal::sio::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = pico::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// Set the LED to be an output
let mut led_pin = pins.led.into_push_pull_output();
// Blink the LED at 1 Hz
loop {
led_pin.set_high().unwrap();
delay.delay_ms(500);
@ -110,37 +158,55 @@ fn main() -> ! {
}
}
/// This function is called whenever the USB Hardware generates an Interrupt
/// Request.
///
/// We do all our USB work under interrupt, so the main thread can continue on
/// knowing nothing about USB.
#[allow(non_snake_case)]
#[interrupt]
unsafe fn USBCTRL_IRQ() {
let mut buf = [0u8; 64];
use core::sync::atomic::{AtomicBool, Ordering};
/// Note whether we've already printed the "hello" message.
static SAID_HELLO: AtomicBool = AtomicBool::new(false);
// Grab the global objects. This is OK as we only access them under interrupt.
let usb_dev = USB_DEVICE.as_mut().unwrap();
let serial = USB_SERIAL.as_mut().unwrap();
if !SAID_HELLO {
SAID_HELLO = true;
let _ = serial.write(b"HelloWorld!\r\n");
// Say hello exactly once on start-up
if SAID_HELLO.load(Ordering::Relaxed) == false {
SAID_HELLO.store(true, Ordering::Relaxed);
let _ = serial.write(b"Hello, World!\r\n");
}
// Poll the USB driver with all of our supported USB Classes
if usb_dev.poll(&mut [serial]) {
let _ = serial.read(&mut buf).map(|count| {
if count == 0 {
return;
let mut buf = [0u8; 64];
match serial.read(&mut buf) {
Err(_e) => {
// Do nothing
}
// Echo back in upper case
buf.iter_mut().take(count).for_each(|c| {
if let 0x61..=0x7a = *c {
*c &= !0x20;
}
});
let mut wr_ptr = &buf[..count];
while !wr_ptr.is_empty() {
let _ = serial.write(wr_ptr).map(|len| {
wr_ptr = &wr_ptr[len..];
Ok(0) => {
// Do nothing
}
Ok(count) => {
// Convert to upper case
buf.iter_mut().take(count).for_each(|b| {
b.make_ascii_uppercase();
});
// Send back to the host
let mut wr_ptr = &buf[..count];
while !wr_ptr.is_empty() {
let _ = serial.write(wr_ptr).map(|len| {
wr_ptr = &wr_ptr[len..];
});
}
}
});
}
}
}
// End of file