mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-02-23 23:57:43 +11:00
Polishing the PWM and USB examples.
This commit is contained in:
parent
3e036cf9b0
commit
35f001f61d
5 changed files with 237 additions and 89 deletions
|
@ -1,4 +1,4 @@
|
||||||
//! # Pico Blinky
|
//! # Pico Blinky Example
|
||||||
//!
|
//!
|
||||||
//! Blinks the LED on a Pico board.
|
//! Blinks the LED on a Pico board.
|
||||||
//!
|
//!
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
//! # Pico Countdown Blinky
|
//! # Pico Countdown Blinky Example
|
||||||
//!
|
//!
|
||||||
//! Blinks the LED on a Pico board, using an RP2040 Timer in Count-down mode.
|
//! Blinks the LED on a Pico board, using an RP2040 Timer in Count-down mode.
|
||||||
//!
|
//!
|
||||||
|
|
|
@ -1,36 +1,74 @@
|
||||||
//! Toggle LED based on GPIO input
|
//! # Pico GPIO In/Out Example
|
||||||
//!
|
//!
|
||||||
//! This will control an LED on GP25 based on a button hooked up to GP15. The button should be tied
|
//! Toggles the LED based on GPIO input.
|
||||||
//! to ground, as the input pin is pulled high internally by this example. When the button is
|
//!
|
||||||
//! pressed, the LED will turn off.
|
//! This will control an LED on GP25 based on a button hooked up to GP15. The
|
||||||
|
//! button should cause the line to be grounded, as the input pin is pulled high
|
||||||
|
//! internally by this example. When the button is pressed, the LED will turn
|
||||||
|
//! off.
|
||||||
|
//!
|
||||||
|
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||||
|
|
||||||
#![no_std]
|
#![no_std]
|
||||||
#![no_main]
|
#![no_main]
|
||||||
|
|
||||||
|
// The macro for our start-up function
|
||||||
use cortex_m_rt::entry;
|
use cortex_m_rt::entry;
|
||||||
use embedded_hal::digital::v2::{InputPin, OutputPin};
|
|
||||||
use hal::pac;
|
|
||||||
use hal::sio::Sio;
|
|
||||||
use panic_halt as _;
|
|
||||||
use pico::{hal, Pins};
|
|
||||||
|
|
||||||
|
// GPIO traits
|
||||||
|
use embedded_hal::digital::v2::{InputPin, OutputPin};
|
||||||
|
|
||||||
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||||
|
// be linked)
|
||||||
|
use panic_halt as _;
|
||||||
|
|
||||||
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||||
|
// register access
|
||||||
|
use pico::hal::pac;
|
||||||
|
|
||||||
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||||||
|
// higher-level drivers.
|
||||||
|
use pico::hal;
|
||||||
|
|
||||||
|
/// The linker will place this boot block at the start of our program image. We
|
||||||
|
/// need this to help the ROM bootloader get our code up and running.
|
||||||
#[link_section = ".boot2"]
|
#[link_section = ".boot2"]
|
||||||
#[used]
|
#[used]
|
||||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
||||||
|
|
||||||
|
/// Entry point to our bare-metal application.
|
||||||
|
///
|
||||||
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||||
|
/// as soon as all global variables are initialised.
|
||||||
|
///
|
||||||
|
/// The function configures the RP2040 peripherals, then just reads the button
|
||||||
|
/// and sets the LED appropriately.
|
||||||
#[entry]
|
#[entry]
|
||||||
fn main() -> ! {
|
fn main() -> ! {
|
||||||
|
// Grab our singleton objects
|
||||||
let mut pac = pac::Peripherals::take().unwrap();
|
let mut pac = pac::Peripherals::take().unwrap();
|
||||||
|
|
||||||
let sio = Sio::new(pac.SIO);
|
// Note - we don't do any clock set-up in this example. The RP2040 will run
|
||||||
let pins = Pins::new(
|
// at it's default clock speed.
|
||||||
|
|
||||||
|
// The single-cycle I/O block controls our GPIO pins
|
||||||
|
let sio = hal::sio::Sio::new(pac.SIO);
|
||||||
|
|
||||||
|
// Set the pins up according to their function on this particular board
|
||||||
|
let pins = pico::Pins::new(
|
||||||
pac.IO_BANK0,
|
pac.IO_BANK0,
|
||||||
pac.PADS_BANK0,
|
pac.PADS_BANK0,
|
||||||
sio.gpio_bank0,
|
sio.gpio_bank0,
|
||||||
&mut pac.RESETS,
|
&mut pac.RESETS,
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Our LED output
|
||||||
let mut led_pin = pins.led.into_push_pull_output();
|
let mut led_pin = pins.led.into_push_pull_output();
|
||||||
|
|
||||||
|
// Our button input
|
||||||
let button_pin = pins.bootsel.into_pull_down_input();
|
let button_pin = pins.bootsel.into_pull_down_input();
|
||||||
|
|
||||||
|
// Run forever, setting the LED according to the button
|
||||||
loop {
|
loop {
|
||||||
if button_pin.is_low().unwrap() {
|
if button_pin.is_low().unwrap() {
|
||||||
led_pin.set_high().unwrap();
|
led_pin.set_high().unwrap();
|
||||||
|
@ -39,3 +77,5 @@ fn main() -> ! {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// End of file
|
||||||
|
|
|
@ -1,40 +1,72 @@
|
||||||
//! Blinks the LED on a Pico board
|
//! # Pico PWM Blink Example
|
||||||
//!
|
//!
|
||||||
//! This will fade in/out the LED attached to GP25, which is the pin the Pico uses for the on-board LED.
|
//! Fades the LED on a Pico board using the PWM peripheral.
|
||||||
|
//!
|
||||||
|
//! This will fade in/out the LED attached to GP25, which is the pin the Pico
|
||||||
|
//! uses for the on-board LED.
|
||||||
|
//!
|
||||||
|
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||||
|
|
||||||
#![no_std]
|
#![no_std]
|
||||||
#![no_main]
|
#![no_main]
|
||||||
|
|
||||||
|
// The macro for our start-up function
|
||||||
use cortex_m_rt::entry;
|
use cortex_m_rt::entry;
|
||||||
use embedded_hal::PwmPin;
|
|
||||||
use embedded_time::fixed_point::FixedPoint;
|
|
||||||
use panic_halt as _;
|
|
||||||
use pico::{
|
|
||||||
hal::{
|
|
||||||
clocks::{init_clocks_and_plls, Clock},
|
|
||||||
pac,
|
|
||||||
pwm::*,
|
|
||||||
watchdog::Watchdog,
|
|
||||||
},
|
|
||||||
Pins, XOSC_CRYSTAL_FREQ,
|
|
||||||
};
|
|
||||||
use rp2040_hal::sio::Sio;
|
|
||||||
|
|
||||||
|
// GPIO traits
|
||||||
|
use embedded_hal::PwmPin;
|
||||||
|
|
||||||
|
// Time handling traits
|
||||||
|
use embedded_time::rate::*;
|
||||||
|
|
||||||
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||||
|
// be linked)
|
||||||
|
use panic_halt as _;
|
||||||
|
|
||||||
|
// Pull in any important traits
|
||||||
|
use pico::hal::prelude::*;
|
||||||
|
|
||||||
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||||
|
// register access
|
||||||
|
use pico::hal::pac;
|
||||||
|
|
||||||
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||||||
|
// higher-level drivers.
|
||||||
|
use pico::hal;
|
||||||
|
|
||||||
|
/// The linker will place this boot block at the start of our program image. We
|
||||||
|
/// need this to help the ROM bootloader get our code up and running.
|
||||||
#[link_section = ".boot2"]
|
#[link_section = ".boot2"]
|
||||||
#[used]
|
#[used]
|
||||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
||||||
|
|
||||||
|
// The minimum PWM value (i.e. LED brightness) we want
|
||||||
const LOW: u16 = 0;
|
const LOW: u16 = 0;
|
||||||
|
|
||||||
|
// The maximum PWM value (i.e. LED brightness) we want
|
||||||
const HIGH: u16 = 25000;
|
const HIGH: u16 = 25000;
|
||||||
|
|
||||||
|
/// Entry point to our bare-metal application.
|
||||||
|
///
|
||||||
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||||
|
/// as soon as all global variables are initialised.
|
||||||
|
///
|
||||||
|
/// The function configures the RP2040 peripherals, then fades the LED in an
|
||||||
|
/// infinite loop.
|
||||||
#[entry]
|
#[entry]
|
||||||
fn main() -> ! {
|
fn main() -> ! {
|
||||||
|
// Grab our singleton objects
|
||||||
let mut pac = pac::Peripherals::take().unwrap();
|
let mut pac = pac::Peripherals::take().unwrap();
|
||||||
let core = pac::CorePeripherals::take().unwrap();
|
let core = pac::CorePeripherals::take().unwrap();
|
||||||
|
|
||||||
let mut watchdog = Watchdog::new(pac.WATCHDOG);
|
// Set up the watchdog driver - needed by the clock setup code
|
||||||
|
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
|
||||||
|
|
||||||
let clocks = init_clocks_and_plls(
|
// Configure the clocks
|
||||||
XOSC_CRYSTAL_FREQ,
|
//
|
||||||
|
// Our default is 12 MHz crystal input, 125 MHz system clock
|
||||||
|
let clocks = hal::clocks::init_clocks_and_plls(
|
||||||
|
pico::XOSC_CRYSTAL_FREQ,
|
||||||
pac.XOSC,
|
pac.XOSC,
|
||||||
pac.CLOCKS,
|
pac.CLOCKS,
|
||||||
pac.PLL_SYS,
|
pac.PLL_SYS,
|
||||||
|
@ -45,34 +77,42 @@ fn main() -> ! {
|
||||||
.ok()
|
.ok()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
let sio = Sio::new(pac.SIO);
|
// The single-cycle I/O block controls our GPIO pins
|
||||||
let pins = Pins::new(
|
let sio = hal::sio::Sio::new(pac.SIO);
|
||||||
|
|
||||||
|
// Set the pins up according to their function on this particular board
|
||||||
|
let pins = pico::Pins::new(
|
||||||
pac.IO_BANK0,
|
pac.IO_BANK0,
|
||||||
pac.PADS_BANK0,
|
pac.PADS_BANK0,
|
||||||
sio.gpio_bank0,
|
sio.gpio_bank0,
|
||||||
&mut pac.RESETS,
|
&mut pac.RESETS,
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// The delay object lets us wait for specified amounts of time (in
|
||||||
|
// milliseconds)
|
||||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
||||||
|
|
||||||
// Init PWMs
|
// Init PWMs
|
||||||
let mut pwm_slices = Slices::new(pac.PWM, &mut pac.RESETS);
|
let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
|
||||||
|
|
||||||
// Configure PWM4
|
// Configure PWM4
|
||||||
let pwm = &mut pwm_slices.pwm4;
|
let pwm = &mut pwm_slices.pwm4;
|
||||||
pwm.set_ph_correct();
|
pwm.set_ph_correct();
|
||||||
pwm.enable();
|
pwm.enable();
|
||||||
|
|
||||||
// Use B channel (which outputs to GPIO 25)
|
// Output channel B on PWM4 to the LED pin
|
||||||
let channel = &mut pwm.channel_b;
|
let channel = &mut pwm.channel_b;
|
||||||
channel.output_to(pins.led);
|
channel.output_to(pins.led);
|
||||||
|
|
||||||
|
// Infinite loop, fading LED up and down
|
||||||
loop {
|
loop {
|
||||||
|
// Ramp brightness up
|
||||||
for i in (LOW..=HIGH).skip(100) {
|
for i in (LOW..=HIGH).skip(100) {
|
||||||
delay.delay_us(8);
|
delay.delay_us(8);
|
||||||
channel.set_duty(i);
|
channel.set_duty(i);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Ramp brightness down
|
||||||
for i in (LOW..=HIGH).rev().skip(100) {
|
for i in (LOW..=HIGH).rev().skip(100) {
|
||||||
delay.delay_us(8);
|
delay.delay_us(8);
|
||||||
channel.set_duty(i);
|
channel.set_duty(i);
|
||||||
|
@ -81,3 +121,5 @@ fn main() -> ! {
|
||||||
delay.delay_ms(500);
|
delay.delay_ms(500);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// End of file
|
||||||
|
|
|
@ -1,49 +1,86 @@
|
||||||
//! Creates a USB Serial device on a Pico board, with the USB driver running in the USB interrupt
|
//! # Pico USB Serial (with Interrupts) Example
|
||||||
//!
|
//!
|
||||||
//! This will create a USB Serial device echoing anything it receives converting to caps the ASCII
|
//! Creates a USB Serial device on a Pico board, with the USB driver running in
|
||||||
//! alphabetical caracters.
|
//! the USB interrupt.
|
||||||
|
//!
|
||||||
|
//! This will create a USB Serial device echoing anything it receives. Incoming
|
||||||
|
//! ASCII characters are converted to upercase, so you can tell it is working
|
||||||
|
//! and not just local-echo!
|
||||||
|
//!
|
||||||
|
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||||
|
|
||||||
#![no_std]
|
#![no_std]
|
||||||
#![no_main]
|
#![no_main]
|
||||||
|
|
||||||
use crate::pac::interrupt;
|
// The macro for our start-up function
|
||||||
use cortex_m_rt::entry;
|
use cortex_m_rt::entry;
|
||||||
|
|
||||||
|
// The macro for marking our interrupt functions
|
||||||
|
use pico::hal::pac::interrupt;
|
||||||
|
|
||||||
|
// GPIO traits
|
||||||
|
use embedded_hal::digital::v2::OutputPin;
|
||||||
|
|
||||||
|
// Time handling traits
|
||||||
|
use embedded_time::rate::*;
|
||||||
|
|
||||||
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||||
|
// be linked)
|
||||||
use panic_halt as _;
|
use panic_halt as _;
|
||||||
use pico::{
|
|
||||||
hal::{
|
// Pull in any important traits
|
||||||
self,
|
use pico::hal::prelude::*;
|
||||||
clocks::{init_clocks_and_plls, Clock},
|
|
||||||
pac,
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||||
sio::Sio,
|
// register access
|
||||||
usb::UsbBus,
|
use pico::hal::pac;
|
||||||
watchdog::Watchdog,
|
|
||||||
},
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||||||
XOSC_CRYSTAL_FREQ,
|
// higher-level drivers.
|
||||||
};
|
use pico::hal;
|
||||||
|
|
||||||
|
// USB Device support
|
||||||
use usb_device::{class_prelude::*, prelude::*};
|
use usb_device::{class_prelude::*, prelude::*};
|
||||||
|
|
||||||
|
// USB Communications Class Device support
|
||||||
use usbd_serial::SerialPort;
|
use usbd_serial::SerialPort;
|
||||||
|
|
||||||
|
/// The linker will place this boot block at the start of our program image. We
|
||||||
|
/// need this to help the ROM bootloader get our code up and running.
|
||||||
#[link_section = ".boot2"]
|
#[link_section = ".boot2"]
|
||||||
#[used]
|
#[used]
|
||||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
||||||
|
|
||||||
// Static data so that it can be accessed in both main and interrupt context
|
/// The USB Device Driver (shared with the interrupt).
|
||||||
static mut USB_DEVICE: Option<UsbDevice<UsbBus>> = None;
|
static mut USB_DEVICE: Option<UsbDevice<hal::usb::UsbBus>> = None;
|
||||||
static mut USB_BUS: Option<UsbBusAllocator<UsbBus>> = None;
|
|
||||||
static mut USB_SERIAL: Option<SerialPort<UsbBus>> = None;
|
|
||||||
static mut SAID_HELLO: bool = false;
|
|
||||||
|
|
||||||
// Blinky-related imports, not needed for USB
|
/// The USB Bus Driver (shared with the interrupt).
|
||||||
use embedded_hal::digital::v2::OutputPin;
|
static mut USB_BUS: Option<UsbBusAllocator<hal::usb::UsbBus>> = None;
|
||||||
use embedded_time::rate::*;
|
|
||||||
use pico::Pins;
|
|
||||||
|
|
||||||
|
/// The USB Serial Device Driver (shared with the interrupt).
|
||||||
|
static mut USB_SERIAL: Option<SerialPort<hal::usb::UsbBus>> = None;
|
||||||
|
|
||||||
|
/// Entry point to our bare-metal application.
|
||||||
|
///
|
||||||
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||||
|
/// as soon as all global variables are initialised.
|
||||||
|
///
|
||||||
|
/// The function configures the RP2040 peripherals, then blinks the LED in an
|
||||||
|
/// infinite loop.
|
||||||
#[entry]
|
#[entry]
|
||||||
fn main() -> ! {
|
fn main() -> ! {
|
||||||
|
// Grab our singleton objects
|
||||||
let mut pac = pac::Peripherals::take().unwrap();
|
let mut pac = pac::Peripherals::take().unwrap();
|
||||||
let mut watchdog = Watchdog::new(pac.WATCHDOG);
|
let core = pac::CorePeripherals::take().unwrap();
|
||||||
|
|
||||||
let clocks = init_clocks_and_plls(
|
// Set up the watchdog driver - needed by the clock setup code
|
||||||
XOSC_CRYSTAL_FREQ,
|
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
|
||||||
|
|
||||||
|
// Configure the clocks
|
||||||
|
//
|
||||||
|
// Our default is 12 MHz crystal input, 125 MHz system clock
|
||||||
|
let clocks = hal::clocks::init_clocks_and_plls(
|
||||||
|
pico::XOSC_CRYSTAL_FREQ,
|
||||||
pac.XOSC,
|
pac.XOSC,
|
||||||
pac.CLOCKS,
|
pac.CLOCKS,
|
||||||
pac.PLL_SYS,
|
pac.PLL_SYS,
|
||||||
|
@ -54,7 +91,7 @@ fn main() -> ! {
|
||||||
.ok()
|
.ok()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
|
|
||||||
let usb_bus = UsbBusAllocator::new(UsbBus::new(
|
let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new(
|
||||||
pac.USBCTRL_REGS,
|
pac.USBCTRL_REGS,
|
||||||
pac.USBCTRL_DPRAM,
|
pac.USBCTRL_DPRAM,
|
||||||
clocks.usb_clock,
|
clocks.usb_clock,
|
||||||
|
@ -62,6 +99,7 @@ fn main() -> ! {
|
||||||
&mut pac.RESETS,
|
&mut pac.RESETS,
|
||||||
));
|
));
|
||||||
unsafe {
|
unsafe {
|
||||||
|
// Note (safety): This is safe as interrupts haven't been started yet
|
||||||
USB_BUS = Some(usb_bus);
|
USB_BUS = Some(usb_bus);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -71,6 +109,7 @@ fn main() -> ! {
|
||||||
}
|
}
|
||||||
|
|
||||||
let usb_dev = UsbDeviceBuilder::new(
|
let usb_dev = UsbDeviceBuilder::new(
|
||||||
|
// Note (safety): This is safe as interrupts haven't been started yet
|
||||||
unsafe { USB_BUS.as_ref().unwrap() },
|
unsafe { USB_BUS.as_ref().unwrap() },
|
||||||
UsbVidPid(0x16c0, 0x27dd),
|
UsbVidPid(0x16c0, 0x27dd),
|
||||||
)
|
)
|
||||||
|
@ -80,6 +119,7 @@ fn main() -> ! {
|
||||||
.device_class(2) // from: https://www.usb.org/defined-class-codes
|
.device_class(2) // from: https://www.usb.org/defined-class-codes
|
||||||
.build();
|
.build();
|
||||||
unsafe {
|
unsafe {
|
||||||
|
// Note (safety): This is safe as interrupts haven't been started yet
|
||||||
USB_DEVICE = Some(usb_dev);
|
USB_DEVICE = Some(usb_dev);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -88,20 +128,28 @@ fn main() -> ! {
|
||||||
pac::NVIC::unmask(hal::pac::Interrupt::USBCTRL_IRQ);
|
pac::NVIC::unmask(hal::pac::Interrupt::USBCTRL_IRQ);
|
||||||
};
|
};
|
||||||
|
|
||||||
// No more USB code after this point in main!
|
// No more USB code after this point in main! We can do anything we want in
|
||||||
// We can do anything we want in here since USB is handled
|
// here since USB is handled in the interrupt - let's blink an LED!
|
||||||
// in the interrupt - let's blink an LED.
|
|
||||||
let core = pac::CorePeripherals::take().unwrap();
|
// The delay object lets us wait for specified amounts of time (in
|
||||||
|
// milliseconds)
|
||||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
||||||
|
|
||||||
let sio = Sio::new(pac.SIO);
|
// The single-cycle I/O block controls our GPIO pins
|
||||||
let pins = Pins::new(
|
let sio = hal::sio::Sio::new(pac.SIO);
|
||||||
|
|
||||||
|
// Set the pins up according to their function on this particular board
|
||||||
|
let pins = pico::Pins::new(
|
||||||
pac.IO_BANK0,
|
pac.IO_BANK0,
|
||||||
pac.PADS_BANK0,
|
pac.PADS_BANK0,
|
||||||
sio.gpio_bank0,
|
sio.gpio_bank0,
|
||||||
&mut pac.RESETS,
|
&mut pac.RESETS,
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Set the LED to be an output
|
||||||
let mut led_pin = pins.led.into_push_pull_output();
|
let mut led_pin = pins.led.into_push_pull_output();
|
||||||
|
|
||||||
|
// Blink the LED at 1 Hz
|
||||||
loop {
|
loop {
|
||||||
led_pin.set_high().unwrap();
|
led_pin.set_high().unwrap();
|
||||||
delay.delay_ms(500);
|
delay.delay_ms(500);
|
||||||
|
@ -110,37 +158,55 @@ fn main() -> ! {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// This function is called whenever the USB Hardware generates an Interrupt
|
||||||
|
/// Request.
|
||||||
|
///
|
||||||
|
/// We do all our USB work under interrupt, so the main thread can continue on
|
||||||
|
/// knowing nothing about USB.
|
||||||
#[allow(non_snake_case)]
|
#[allow(non_snake_case)]
|
||||||
#[interrupt]
|
#[interrupt]
|
||||||
unsafe fn USBCTRL_IRQ() {
|
unsafe fn USBCTRL_IRQ() {
|
||||||
let mut buf = [0u8; 64];
|
use core::sync::atomic::{AtomicBool, Ordering};
|
||||||
|
|
||||||
|
/// Note whether we've already printed the "hello" message.
|
||||||
|
static SAID_HELLO: AtomicBool = AtomicBool::new(false);
|
||||||
|
|
||||||
|
// Grab the global objects. This is OK as we only access them under interrupt.
|
||||||
let usb_dev = USB_DEVICE.as_mut().unwrap();
|
let usb_dev = USB_DEVICE.as_mut().unwrap();
|
||||||
let serial = USB_SERIAL.as_mut().unwrap();
|
let serial = USB_SERIAL.as_mut().unwrap();
|
||||||
|
|
||||||
if !SAID_HELLO {
|
// Say hello exactly once on start-up
|
||||||
SAID_HELLO = true;
|
if SAID_HELLO.load(Ordering::Relaxed) == false {
|
||||||
let _ = serial.write(b"HelloWorld!\r\n");
|
SAID_HELLO.store(true, Ordering::Relaxed);
|
||||||
|
let _ = serial.write(b"Hello, World!\r\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Poll the USB driver with all of our supported USB Classes
|
||||||
if usb_dev.poll(&mut [serial]) {
|
if usb_dev.poll(&mut [serial]) {
|
||||||
let _ = serial.read(&mut buf).map(|count| {
|
let mut buf = [0u8; 64];
|
||||||
if count == 0 {
|
match serial.read(&mut buf) {
|
||||||
return;
|
Err(_e) => {
|
||||||
|
// Do nothing
|
||||||
}
|
}
|
||||||
|
Ok(0) => {
|
||||||
// Echo back in upper case
|
// Do nothing
|
||||||
buf.iter_mut().take(count).for_each(|c| {
|
}
|
||||||
if let 0x61..=0x7a = *c {
|
Ok(count) => {
|
||||||
*c &= !0x20;
|
// Convert to upper case
|
||||||
}
|
buf.iter_mut().take(count).for_each(|b| {
|
||||||
});
|
b.make_ascii_uppercase();
|
||||||
|
|
||||||
let mut wr_ptr = &buf[..count];
|
|
||||||
while !wr_ptr.is_empty() {
|
|
||||||
let _ = serial.write(wr_ptr).map(|len| {
|
|
||||||
wr_ptr = &wr_ptr[len..];
|
|
||||||
});
|
});
|
||||||
|
|
||||||
|
// Send back to the host
|
||||||
|
let mut wr_ptr = &buf[..count];
|
||||||
|
while !wr_ptr.is_empty() {
|
||||||
|
let _ = serial.write(wr_ptr).map(|len| {
|
||||||
|
wr_ptr = &wr_ptr[len..];
|
||||||
|
});
|
||||||
|
}
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// End of file
|
||||||
|
|
Loading…
Add table
Reference in a new issue