mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-26 03:06:32 +11:00
Add basic multicore FIFO example (#226)
* Add basic multicore fifo example * Add documentation for multicore * Send system_clock frequency to core1 over FIFO in example * Add Stack::new() to HAL. Use Stack::new() in example
This commit is contained in:
parent
539f6db0f7
commit
427344667e
2 changed files with 230 additions and 1 deletions
183
rp2040-hal/examples/multicore_fifo_blink.rs
Normal file
183
rp2040-hal/examples/multicore_fifo_blink.rs
Normal file
|
@ -0,0 +1,183 @@
|
|||
//! # Multicore FIFO + GPIO 'Blinky' Example
|
||||
//!
|
||||
//! This application demonstrates FIFO communication between the CPU cores on the RP2040.
|
||||
//! Core 0 will calculate and send a delay value to Core 1, which will then wait that long
|
||||
//! before toggling the LED.
|
||||
//! Core 0 will wait for Core 1 to complete this task and send an acknowledgement value.
|
||||
//!
|
||||
//! It may need to be adapted to your particular board layout and/or pin assignment.
|
||||
//!
|
||||
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
// The macro for our start-up function
|
||||
use cortex_m_rt::entry;
|
||||
|
||||
use embedded_time::fixed_point::FixedPoint;
|
||||
use hal::clocks::Clock;
|
||||
use hal::multicore::{Multicore, Stack};
|
||||
use hal::sio::Sio;
|
||||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||
// be linked)
|
||||
use panic_halt as _;
|
||||
|
||||
// Alias for our HAL crate
|
||||
use rp2040_hal as hal;
|
||||
|
||||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||
// register access
|
||||
use hal::pac;
|
||||
|
||||
// Some traits we need
|
||||
use embedded_hal::digital::v2::ToggleableOutputPin;
|
||||
|
||||
/// The linker will place this boot block at the start of our program image. We
|
||||
// need this to help the ROM bootloader get our code up and running.
|
||||
#[link_section = ".boot2"]
|
||||
#[used]
|
||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
||||
|
||||
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
||||
/// if your board has a different frequency
|
||||
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
||||
|
||||
/// Value to indicate that Core 1 has completed its task
|
||||
const CORE1_TASK_COMPLETE: u32 = 0xEE;
|
||||
|
||||
/// Stack for core 1
|
||||
///
|
||||
/// Core 0 gets its stack via the normal route - any memory not used by static values is
|
||||
/// reserved for stack and initialised by cortex-m-rt.
|
||||
/// To get the same for Core 1, we would need to compile everything seperately and
|
||||
/// modify the linker file for both programs, and that's quite annoying.
|
||||
/// So instead, core1.spawn takes a [usize] which gets used for the stack.
|
||||
/// NOTE: We use the `Stack` struct here to ensure that it has 32-byte alignment, which allows
|
||||
/// the stack guard to take up the least amount of usable RAM.
|
||||
static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
|
||||
fn core1_task() -> ! {
|
||||
let mut pac = unsafe { pac::Peripherals::steal() };
|
||||
let core = unsafe { pac::CorePeripherals::steal() };
|
||||
|
||||
let mut sio = Sio::new(pac.SIO);
|
||||
let pins = hal::gpio::Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
|
||||
let mut led_pin = pins.gpio25.into_push_pull_output();
|
||||
// The first thing core0 sends us is the system bus frequency.
|
||||
// The systick is based on this frequency, so we need that to
|
||||
// be accurate when sleeping via cortex_m::delay::Delay
|
||||
let sys_freq = sio.fifo.read_blocking();
|
||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, sys_freq);
|
||||
loop {
|
||||
let input = sio.fifo.read();
|
||||
if let Some(word) = input {
|
||||
delay.delay_ms(word);
|
||||
led_pin.toggle().unwrap();
|
||||
sio.fifo.write_blocking(CORE1_TASK_COMPLETE);
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||
/// as soon as all global variables are initialised.
|
||||
///
|
||||
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
|
||||
/// an infinite loop. If there is an LED connected to that pin, it will blink.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Grab our singleton objects
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
let _core = pac::CorePeripherals::take().unwrap();
|
||||
|
||||
// Set up the watchdog driver - needed by the clock setup code
|
||||
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
// Configure the clocks
|
||||
let clocks = hal::clocks::init_clocks_and_plls(
|
||||
XTAL_FREQ_HZ,
|
||||
pac.XOSC,
|
||||
pac.CLOCKS,
|
||||
pac.PLL_SYS,
|
||||
pac.PLL_USB,
|
||||
&mut pac.RESETS,
|
||||
&mut watchdog,
|
||||
)
|
||||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// The single-cycle I/O block controls our GPIO pins
|
||||
let mut sio = hal::sio::Sio::new(pac.SIO);
|
||||
|
||||
let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio);
|
||||
let cores = mc.cores();
|
||||
let core1 = &mut cores[1];
|
||||
let _test = core1.spawn(core1_task, unsafe { &mut CORE1_STACK.mem });
|
||||
|
||||
// Let core1 know how fast the system clock is running
|
||||
let sys_freq = clocks.system_clock.freq().integer();
|
||||
sio.fifo.write_blocking(sys_freq);
|
||||
/// How much we adjust the LED period every cycle
|
||||
const LED_PERIOD_INCREMENT: i32 = 2;
|
||||
|
||||
/// The minimum LED toggle interval we allow for.
|
||||
const LED_PERIOD_MIN: i32 = 0;
|
||||
|
||||
/// The maximum LED toggle interval period we allow for. Keep it reasonably short so it's easy to see.
|
||||
const LED_PERIOD_MAX: i32 = 100;
|
||||
|
||||
// Our current LED period. It starts at the shortest period, which is the highest blink frequency
|
||||
let mut led_period: i32 = LED_PERIOD_MIN;
|
||||
|
||||
// The direction we're incrementing our LED period.
|
||||
// Since we start at the minimum value, start by counting up
|
||||
let mut count_up = true;
|
||||
|
||||
loop {
|
||||
if count_up {
|
||||
// Increment our period
|
||||
led_period += LED_PERIOD_INCREMENT;
|
||||
|
||||
// Change direction of increment if we hit the limit
|
||||
if led_period > LED_PERIOD_MAX {
|
||||
led_period = LED_PERIOD_MAX;
|
||||
count_up = false;
|
||||
}
|
||||
} else {
|
||||
// Decrement our period
|
||||
led_period -= LED_PERIOD_INCREMENT;
|
||||
|
||||
// Change direction of increment if we hit the limit
|
||||
if led_period < LED_PERIOD_MIN {
|
||||
led_period = LED_PERIOD_MIN;
|
||||
count_up = true;
|
||||
}
|
||||
}
|
||||
|
||||
// It should not be possible for led_period to go negative, but let's ensure that.
|
||||
if led_period < 0 {
|
||||
led_period = 0;
|
||||
}
|
||||
|
||||
// Send the new delay time to Core 1. We convert it
|
||||
sio.fifo.write(led_period as u32);
|
||||
|
||||
// Sleep until Core 1 sends a message to tell us it is done
|
||||
let ack = sio.fifo.read_blocking();
|
||||
if ack != CORE1_TASK_COMPLETE {
|
||||
// In a real application you might want to handle the case
|
||||
// where the CPU sent the wrong message - we're going to
|
||||
// ignore it here.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// End of file
|
|
@ -1,5 +1,37 @@
|
|||
//! Multicore support
|
||||
// See [Chapter ?? Section ??](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
|
||||
//!
|
||||
//! This module handles setup of the 2nd cpu core on the rp2040, which we refer to as core1.
|
||||
//! It provides functionality for setting up the stack, and starting core1.
|
||||
//!
|
||||
//! The options for an entrypoint for core1 are
|
||||
//! - a function that never returns - eg
|
||||
//! `fn core1_task() -> ! { loop{} }; `
|
||||
//! - a lambda (note: This requires a global allocator which requires a nightly compiler. Not recommended for beginners)
|
||||
//!
|
||||
//! # Usage
|
||||
//!
|
||||
//! ```no_run
|
||||
//! static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
//! fn core1_task() -> ! {
|
||||
//! loop{}
|
||||
//! }
|
||||
//! // fn main() -> ! {
|
||||
//! use rp2040_hal::{pac, gpio::Pins, sio::Sio, multicore::{Multicore, Stack}};
|
||||
//! let mut pac = pac::Peripherals::take().unwrap();
|
||||
//! let mut sio = Sio::new(pac.SIO);
|
||||
//! // Other init code above this line
|
||||
//! let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio);
|
||||
//! let cores = mc.cores();
|
||||
//! let core1 = &mut cores[1];
|
||||
//! let _test = core1.spawn(core1_task, unsafe { &mut CORE1_STACK.mem });
|
||||
//! // The rest of your application below this line
|
||||
//! //}
|
||||
//!
|
||||
//! ```
|
||||
//!
|
||||
//! For inter-processor communications, see [`crate::sio::SioFifo`] and [`crate::sio::Spinlock0`]
|
||||
//!
|
||||
//! For a detailed example, see [examples/multicore_fifo_blink.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/multicore_fifo_blink.rs)
|
||||
|
||||
use crate::pac;
|
||||
|
||||
|
@ -61,6 +93,20 @@ pub struct Multicore<'p> {
|
|||
cores: [Core<'p>; 2],
|
||||
}
|
||||
|
||||
/// Data type for a properly aligned stack of N 32-bit (usize) words
|
||||
#[repr(C, align(32))]
|
||||
pub struct Stack<const SIZE: usize> {
|
||||
/// Memory to be used for the stack
|
||||
pub mem: [usize; SIZE],
|
||||
}
|
||||
|
||||
impl<const SIZE: usize> Stack<SIZE> {
|
||||
/// Construct a stack of length SIZE, initialized to 0
|
||||
pub const fn new() -> Stack<SIZE> {
|
||||
Stack { mem: [0; SIZE] }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'p> Multicore<'p> {
|
||||
/// Create a new |Multicore| instance.
|
||||
pub fn new(psm: &'p mut pac::PSM, ppb: &'p mut pac::PPB, sio: &'p mut crate::Sio) -> Self {
|
||||
|
|
Loading…
Add table
Reference in a new issue