mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-26 03:06:32 +11:00
Add GPIO interrupt example
This commit is contained in:
parent
78cad0df97
commit
44a9b0f541
1 changed files with 181 additions and 0 deletions
181
rp2040-hal/examples/gpio_irq_example.rs
Normal file
181
rp2040-hal/examples/gpio_irq_example.rs
Normal file
|
@ -0,0 +1,181 @@
|
|||
//! # GPIO IRQ Example
|
||||
//!
|
||||
//! This application demonstrates use of GPIO Interrupts.
|
||||
//! It is also intended as a general introduction to interrupts with RP2040.
|
||||
//!
|
||||
//! Each GPIO can be triggered on the input being high (LevelHigh), being low (LevelLow)
|
||||
//! starting high and then going low (EdgeLow) or starting low and becoming high (EdgeHigh)
|
||||
//!
|
||||
//! In this example, we trigger on EdgeLow. Our input pin configured to be pulled to the high logic-level
|
||||
//! via an internal pullup resistor. This resistor is quite weak, so you can bring the logic level back to low
|
||||
//! via an external jumper wire or switch.
|
||||
//! Whenever we see the edge transition, we will toggle the output on GPIO25 - this is the LED pin on a Pico.
|
||||
//!
|
||||
//! Note that this demo does not perform any [software debouncing](https://en.wikipedia.org/wiki/Switch#Contact_bounce).
|
||||
//! You can fix that through hardware, or you could disable the button interrupt in the interrupt and re-enable it
|
||||
//! some time later using one of the Alarms of the Timer peripheral - this is left as an exercise for the reader.
|
||||
//!
|
||||
//! It may need to be adapted to your particular board layout and/or pin assignment.
|
||||
//!
|
||||
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use core::cell::RefCell;
|
||||
use cortex_m::interrupt::Mutex;
|
||||
// The macro for our start-up function
|
||||
use cortex_m_rt::entry;
|
||||
|
||||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||
// be linked)
|
||||
use panic_halt as _;
|
||||
|
||||
// Alias for our HAL crate
|
||||
use rp2040_hal as hal;
|
||||
|
||||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||
// register access
|
||||
use hal::pac;
|
||||
|
||||
// Some traits we need
|
||||
use embedded_hal::digital::v2::ToggleableOutputPin;
|
||||
|
||||
// Our interrupt macro
|
||||
use hal::pac::interrupt;
|
||||
|
||||
/// The linker will place this boot block at the start of our program image. We
|
||||
/// need this to help the ROM bootloader get our code up and running.
|
||||
#[link_section = ".boot2"]
|
||||
#[used]
|
||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
||||
|
||||
use rp2040_hal::gpio;
|
||||
use rp2040_hal::gpio::Interrupt::EdgeLow;
|
||||
|
||||
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
||||
/// if your board has a different frequency
|
||||
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
||||
|
||||
// Pin types quickly become very long - make some type aliases using `type` to help with that
|
||||
// This also makes it super quick to change pin numbers!
|
||||
type LedPin = gpio::Pin<gpio::bank0::Gpio25, gpio::PushPullOutput>;
|
||||
type ButtonPin = gpio::Pin<gpio::bank0::Gpio26, gpio::PullUpInput>;
|
||||
|
||||
/// This how we transfer our Led and Button pins into the Interrupt Handler
|
||||
static GLOBAL_LED: Mutex<RefCell<Option<LedPin>>> = Mutex::new(RefCell::new(None));
|
||||
static GLOBAL_BUTTON: Mutex<RefCell<Option<ButtonPin>>> = Mutex::new(RefCell::new(None));
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||
/// as soon as all global variables are initialised.
|
||||
///
|
||||
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
|
||||
/// an infinite loop. If there is an LED connected to that pin, it will blink.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Grab our singleton objects
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
|
||||
// Set up the watchdog driver - needed by the clock setup code
|
||||
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
// Configure the clocks
|
||||
let _clocks = hal::clocks::init_clocks_and_plls(
|
||||
XTAL_FREQ_HZ,
|
||||
pac.XOSC,
|
||||
pac.CLOCKS,
|
||||
pac.PLL_SYS,
|
||||
pac.PLL_USB,
|
||||
&mut pac.RESETS,
|
||||
&mut watchdog,
|
||||
)
|
||||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// The single-cycle I/O block controls our GPIO pins
|
||||
let sio = hal::Sio::new(pac.SIO);
|
||||
|
||||
// Set the pins to their default state
|
||||
let pins = hal::gpio::Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
|
||||
// Configure GPIO 25 as an output to drive our LED.
|
||||
// we can use into_mode() instead of into_pull_up_input()
|
||||
// since the variable we're pushing it into has that type
|
||||
let led = pins.gpio25.into_mode();
|
||||
|
||||
// Now we give away that GPIO pin, via the variable
|
||||
// `GLOBAL_LED`. We can no longer access this pin from this main thread.
|
||||
cortex_m::interrupt::free(|cs| {
|
||||
GLOBAL_LED.borrow(cs).replace(Some(led));
|
||||
});
|
||||
|
||||
// Set up the GPIO pin that will be our input
|
||||
let in_pin = pins.gpio26.into_mode();
|
||||
// Trigger on the 'falling edge' of the input pin.
|
||||
// This will happen as the button is being pressed
|
||||
in_pin.set_interrupt_enabled(EdgeLow, true);
|
||||
|
||||
// Give away our button GPIO pin too
|
||||
cortex_m::interrupt::free(|cs| {
|
||||
GLOBAL_BUTTON.borrow(cs).replace(Some(in_pin));
|
||||
});
|
||||
|
||||
// Unmask the IO_BANK0 IRQ so that the NVIC interrupt controller
|
||||
// will jump to the interrupt function when the interrupt occurs.
|
||||
// We do this last so that the interrupt can't go off while
|
||||
// it is in the middle of being configured
|
||||
unsafe {
|
||||
pac::NVIC::unmask(pac::Interrupt::IO_IRQ_BANK0);
|
||||
}
|
||||
|
||||
loop {
|
||||
// interrupts handle everything else in this example.
|
||||
// if we wanted low power we could go to sleep. to
|
||||
// keep this example simple we'll just execute a nop.
|
||||
// the nop (No Operation) instruction does nothing,
|
||||
// but if we have no code here clippy would complain.
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
}
|
||||
|
||||
#[interrupt]
|
||||
fn IO_IRQ_BANK0() {
|
||||
static mut LED: Option<LedPin> = None;
|
||||
static mut BUTTON: Option<ButtonPin> = None;
|
||||
|
||||
// This is one-time lazy initialisation. We steal the variables given to us
|
||||
// via `GLOBAL_LED` and `GLOBAL_BUTTON`.
|
||||
if LED.is_none() {
|
||||
cortex_m::interrupt::free(|cs| {
|
||||
*LED = GLOBAL_LED.borrow(cs).take();
|
||||
});
|
||||
}
|
||||
if BUTTON.is_none() {
|
||||
cortex_m::interrupt::free(|cs| {
|
||||
*BUTTON = GLOBAL_BUTTON.borrow(cs).take();
|
||||
});
|
||||
}
|
||||
|
||||
// Need to check if our Option<LedPin> contains our pin
|
||||
if let Some(led) = LED {
|
||||
// toggle can't fail, but the embedded-hal traits always allow for it
|
||||
// we can discard the return value by assigning it to an unnamed variable
|
||||
let _ = led.toggle();
|
||||
}
|
||||
|
||||
// Need to check if our Option<ButtonPin> contains our pin
|
||||
if let Some(button) = BUTTON {
|
||||
// Our interrupt doesn't clear itself.
|
||||
// Do that now so we don't immediately jump back to this interrupt handler.
|
||||
button.clear_interrupt(EdgeLow);
|
||||
}
|
||||
}
|
||||
|
||||
// End of file
|
Loading…
Add table
Reference in a new issue