Use TimerInstant in Timer::GetCounter & add Alarm::schedule_at (#439)

This commit is contained in:
Wilfried Chauveau 2022-08-31 06:54:57 +01:00 committed by GitHub
parent f30df4a0c7
commit 4dbd5667a6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 91 additions and 38 deletions

View file

@ -98,7 +98,7 @@ fn main() -> ! {
let mut said_hello = false; let mut said_hello = false;
loop { loop {
// A welcome message at the beginning // A welcome message at the beginning
if !said_hello && timer.get_counter() >= 2_000_000 { if !said_hello && timer.get_counter().ticks() >= 2_000_000 {
said_hello = true; said_hello = true;
let _ = serial.write(b"Hello, World!\r\n"); let _ = serial.write(b"Hello, World!\r\n");
} }

View file

@ -1 +0,0 @@
//! Time units

View file

@ -8,13 +8,28 @@
//! //!
//! See [Chapter 4 Section 6](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details. //! See [Chapter 4 Section 6](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details.
use fugit::{Duration, MicrosDurationU64}; use fugit::{Duration, MicrosDurationU64, TimerInstantU64};
use crate::atomic_register_access::{write_bitmask_clear, write_bitmask_set}; use crate::atomic_register_access::{write_bitmask_clear, write_bitmask_set};
use crate::pac::{RESETS, TIMER}; use crate::pac::{RESETS, TIMER};
use crate::resets::SubsystemReset; use crate::resets::SubsystemReset;
use core::marker::PhantomData; use core::marker::PhantomData;
/// Instant type used by the Timer & Alarm methods.
pub type Instant = TimerInstantU64<1_000_000>;
fn get_counter(timer: &crate::pac::timer::RegisterBlock) -> Instant {
let mut hi0 = timer.timerawh.read().bits();
let timestamp = loop {
let low = timer.timerawl.read().bits();
let hi1 = timer.timerawh.read().bits();
if hi0 == hi1 {
break (u64::from(hi0) << 32) | u64::from(low);
}
hi0 = hi1;
};
TimerInstantU64::from_ticks(timestamp)
}
/// Timer peripheral /// Timer peripheral
pub struct Timer { pub struct Timer {
timer: TIMER, timer: TIMER,
@ -24,6 +39,7 @@ pub struct Timer {
impl Timer { impl Timer {
/// Create a new [`Timer`] /// Create a new [`Timer`]
pub fn new(timer: TIMER, resets: &mut RESETS) -> Self { pub fn new(timer: TIMER, resets: &mut RESETS) -> Self {
timer.reset_bring_down(resets);
timer.reset_bring_up(resets); timer.reset_bring_up(resets);
Self { Self {
timer, timer,
@ -32,16 +48,8 @@ impl Timer {
} }
/// Get the current counter value. /// Get the current counter value.
pub fn get_counter(&self) -> u64 { pub fn get_counter(&self) -> Instant {
let mut hi0 = self.timer.timerawh.read().bits(); get_counter(&self.timer)
loop {
let low = self.timer.timerawl.read().bits();
let hi1 = self.timer.timerawh.read().bits();
if hi0 == hi1 {
break (u64::from(hi0) << 32) | u64::from(low);
}
hi0 = hi1;
}
} }
/// Get the value of the least significant word of the counter. /// Get the value of the least significant word of the counter.
@ -136,13 +144,14 @@ impl embedded_hal::timer::CountDown for CountDown<'_> {
self.next_end = Some( self.next_end = Some(
self.timer self.timer
.get_counter() .get_counter()
.ticks()
.wrapping_add(self.period.to_micros()), .wrapping_add(self.period.to_micros()),
); );
} }
fn wait(&mut self) -> nb::Result<(), void::Void> { fn wait(&mut self) -> nb::Result<(), void::Void> {
if let Some(end) = self.next_end { if let Some(end) = self.next_end {
let ts = self.timer.get_counter(); let ts = self.timer.get_counter().ticks();
if ts >= end { if ts >= end {
self.next_end = Some(end.wrapping_add(self.period.to_micros())); self.next_end = Some(end.wrapping_add(self.period.to_micros()));
Ok(()) Ok(())
@ -190,15 +199,21 @@ pub trait Alarm {
/// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called, /// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called,
/// this will trigger interrupt whenever this time elapses. /// this will trigger interrupt whenever this time elapses.
/// ///
/// The RP2040 has been observed to take a little while to schedule an alarm. For this
/// reason, the minimum time that this function accepts is `10.micros()`
///
/// [enable_interrupt]: #method.enable_interrupt /// [enable_interrupt]: #method.enable_interrupt
fn schedule<const NOM: u32, const DENOM: u32>( fn schedule<const NOM: u32, const DENOM: u32>(
&mut self, &mut self,
countdown: Duration<u32, NOM, DENOM>, countdown: Duration<u32, NOM, DENOM>,
) -> Result<(), ScheduleAlarmError>; ) -> Result<(), ScheduleAlarmError>;
/// Schedule the alarm to be finished at the given timestamp. If [enable_interrupt] is
/// called, this will trigger interrupt whenever this timestamp is reached.
///
/// The RP2040 is unable to schedule an event taking place in more than
/// `u32::max_value()` microseconds.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule_at(&mut self, timestamp: Instant) -> Result<(), ScheduleAlarmError>;
/// Return true if this alarm is finished. /// Return true if this alarm is finished.
fn finished(&self) -> bool; fn finished(&self) -> bool;
} }
@ -207,6 +222,37 @@ macro_rules! impl_alarm {
($name:ident { rb: $timer_alarm:ident, int: $int_alarm:ident, int_name: $int_name:tt, armed_bit_mask: $armed_bit_mask: expr }) => { ($name:ident { rb: $timer_alarm:ident, int: $int_alarm:ident, int_name: $int_name:tt, armed_bit_mask: $armed_bit_mask: expr }) => {
/// An alarm that can be used to schedule events in the future. Alarms can also be configured to trigger interrupts. /// An alarm that can be used to schedule events in the future. Alarms can also be configured to trigger interrupts.
pub struct $name(PhantomData<()>); pub struct $name(PhantomData<()>);
impl $name {
fn schedule_internal(
&mut self,
timer: &crate::pac::timer::RegisterBlock,
timestamp: Instant,
) -> Result<(), ScheduleAlarmError> {
let timestamp_low = (timestamp.ticks() & 0xFFFF_FFFF) as u32;
// This lock is for time-criticality
cortex_m::interrupt::free(|_| {
let alarm = &timer.$timer_alarm;
// safety: This is the only code in the codebase that accesses memory address $timer_alarm
alarm.write(|w| unsafe { w.bits(timestamp_low) });
// If it is not set, it has already triggered.
let now = get_counter(timer);
if now > timestamp && (timer.armed.read().bits() & $armed_bit_mask) != 0 {
// timestamp was set in the past
// safety: TIMER.armed is a write-clear register, and there can only be
// 1 instance of AlarmN so we can safely atomically clear this bit.
unsafe {
timer.armed.write_with_zero(|w| w.bits($armed_bit_mask));
}
return Err(ScheduleAlarmError::AlarmTooSoon);
}
Ok(())
})
}
}
impl Alarm for $name { impl Alarm for $name {
/// Clear the interrupt flag. This should be called after interrupt ` /// Clear the interrupt flag. This should be called after interrupt `
@ -255,38 +301,43 @@ macro_rules! impl_alarm {
} }
} }
/// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called, this will trigger interrupt ` /// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called,
/// this will trigger interrupt `
#[doc = $int_name] #[doc = $int_name]
/// ` whenever this time elapses. /// ` whenever this time elapses.
/// ///
/// The RP2040 has been observed to take a little while to schedule an alarm. For this reason, the minimum time that this function accepts is `10.micros()`
///
/// [enable_interrupt]: #method.enable_interrupt /// [enable_interrupt]: #method.enable_interrupt
fn schedule<const NOM: u32, const DENOM: u32>( fn schedule<const NOM: u32, const DENOM: u32>(
&mut self, &mut self,
countdown: Duration<u32, NOM, DENOM>, countdown: Duration<u32, NOM, DENOM>,
) -> Result<(), ScheduleAlarmError> { ) -> Result<(), ScheduleAlarmError> {
let duration = countdown.to_micros(); // safety: Only read operations are made on the timer and they should not have any UB
let timer = unsafe { &*TIMER::ptr() };
let micros = fugit::MicrosDurationU32::micros(countdown.to_micros());
let timestamp = get_counter(timer) + micros;
const MIN_MICROSECONDS: u32 = 10; self.schedule_internal(timer, timestamp)
if duration < MIN_MICROSECONDS { }
return Err(ScheduleAlarmError::AlarmTooSoon);
} else {
cortex_m::interrupt::free(|_| {
// safety: This is a read action and should not have any UB
let target_time = unsafe { &*TIMER::ptr() }
.timelr
.read()
.bits()
.wrapping_add(duration);
// safety: This is the only code in the codebase that accesses memory address $timer_alarm /// Schedule the alarm to be finished at the given timestamp. If [enable_interrupt] is
unsafe { &*TIMER::ptr() } /// called, this will trigger interrupt `
.$timer_alarm #[doc = $int_name]
.write(|w| unsafe { w.bits(target_time) }); /// ` whenever this timestamp is reached.
}); ///
Ok(()) /// The RP2040 is unable to schedule an event taking place in more than
/// `u32::max_value()` microseconds.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule_at(&mut self, timestamp: Instant) -> Result<(), ScheduleAlarmError> {
// safety: Only read operations are made on the timer and they should not have any UB
let timer = unsafe { &*TIMER::ptr() };
let now = get_counter(timer);
let duration = timestamp.ticks().saturating_sub(now.ticks());
if duration > u32::max_value().into() {
return Err(ScheduleAlarmError::AlarmTooLate);
} }
self.schedule_internal(timer, timestamp)
} }
/// Return true if this alarm is finished. /// Return true if this alarm is finished.
@ -305,6 +356,8 @@ macro_rules! impl_alarm {
pub enum ScheduleAlarmError { pub enum ScheduleAlarmError {
/// Alarm time is too low. Should be at least 10 microseconds. /// Alarm time is too low. Should be at least 10 microseconds.
AlarmTooSoon, AlarmTooSoon,
/// Alarm time is too high. Should not be more than `u32::max_value()` in the future.
AlarmTooLate,
} }
impl_alarm!(Alarm0 { impl_alarm!(Alarm0 {

View file

@ -58,6 +58,7 @@ impl Watchdog {
/// # Arguments /// # Arguments
/// ///
/// * `cycles` - Total number of tick cycles before the next tick is generated. /// * `cycles` - Total number of tick cycles before the next tick is generated.
/// It is expected to be the frequency in MHz of clk_ref.
pub fn enable_tick_generation(&mut self, cycles: u8) { pub fn enable_tick_generation(&mut self, cycles: u8) {
const WATCHDOG_TICK_ENABLE_BITS: u32 = 0x200; const WATCHDOG_TICK_ENABLE_BITS: u32 = 0x200;