mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-23 01:36:35 +11:00
Merge pull request #28 from Nic0w/uart
Working implementation of an UART HAL.
This commit is contained in:
commit
877c967466
2 changed files with 477 additions and 3 deletions
|
@ -19,4 +19,4 @@ rp2040-pac = { git = "https://github.com/rp-rs/rp2040-pac", branch="main" }
|
|||
[dev-dependencies]
|
||||
cortex-m-rt = "0.6.13"
|
||||
panic-halt = "0.2.0"
|
||||
rp2040-boot2 = { git = "https://github.com/rp-rs/rp2040-boot2-rs", branch="main" }
|
||||
rp2040-boot2 = { git = "https://github.com/rp-rs/rp2040-boot2-rs", branch="main" }
|
||||
|
|
|
@ -1,3 +1,477 @@
|
|||
//! Universal asynchronous receiver-transmitter (UART)
|
||||
//! Universal Asynchronous Receiver Transmitter (UART)
|
||||
// See [Chapter 4 Section 2](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
|
||||
// TODO
|
||||
|
||||
use core::convert::Infallible;
|
||||
use core::ops::Deref;
|
||||
use embedded_time::fixed_point::FixedPoint;
|
||||
use embedded_time::rate::Baud;
|
||||
use embedded_time::rate::Hertz;
|
||||
|
||||
use embedded_hal::serial::{Read, Write};
|
||||
|
||||
use nb::Error::{Other, WouldBlock};
|
||||
|
||||
use crate::pac::{
|
||||
uart0::{uartlcr_h::W as UART_LCR_H_Writer, RegisterBlock},
|
||||
UART0, UART1,
|
||||
};
|
||||
|
||||
/// Error type for UART operations.
|
||||
#[derive(Debug)]
|
||||
pub enum Error {
|
||||
/// Bad argument : when things overflow, ...
|
||||
BadArgument,
|
||||
}
|
||||
|
||||
/// When there's a read error.
|
||||
pub struct ReadError<'err> {
|
||||
/// The type of error
|
||||
pub err_type: ReadErrorType,
|
||||
|
||||
/// Reference to the data that was read but eventually discared because of the error.
|
||||
pub discared: &'err [u8],
|
||||
}
|
||||
|
||||
/// Possible types of read errors. See Chapter 4, Section 2 §8 - Table 436: "UARTDR Register"
|
||||
pub enum ReadErrorType {
|
||||
/// Triggered when the FIFO (or shift-register) is overflowed.
|
||||
Overrun,
|
||||
|
||||
/// Triggered when a break is received
|
||||
Break,
|
||||
|
||||
/// Triggered when there is a parity mismatch between what's received and our settings.
|
||||
Parity,
|
||||
|
||||
/// Triggered when the received character didn't have a valid stop bit.
|
||||
Framing,
|
||||
}
|
||||
|
||||
/// State of the UART Peripheral.
|
||||
pub trait State {}
|
||||
|
||||
/// Trait to handle both underlying devices (UART0 & UART1)
|
||||
pub trait UartDevice: Deref<Target = RegisterBlock> {}
|
||||
|
||||
impl UartDevice for UART0 {}
|
||||
impl UartDevice for UART1 {}
|
||||
|
||||
/// UART is enabled.
|
||||
pub struct Enabled;
|
||||
|
||||
/// UART is disabled.
|
||||
pub struct Disabled;
|
||||
|
||||
impl State for Enabled {}
|
||||
impl State for Disabled {}
|
||||
|
||||
/// Data bits
|
||||
pub enum DataBits {
|
||||
/// 5 bits
|
||||
Five,
|
||||
/// 6 bits
|
||||
Six,
|
||||
/// 7 bits
|
||||
Seven,
|
||||
/// 8 bits
|
||||
Eight,
|
||||
}
|
||||
|
||||
/// Stop bits
|
||||
pub enum StopBits {
|
||||
/// 1 bit
|
||||
One,
|
||||
|
||||
/// 2 bits
|
||||
Two,
|
||||
}
|
||||
|
||||
/// Parity
|
||||
/// The "none" state of parity is represented with the Option type (None).
|
||||
pub enum Parity {
|
||||
/// Odd parity
|
||||
Odd,
|
||||
|
||||
/// Even parity
|
||||
Even,
|
||||
}
|
||||
|
||||
/// A struct holding the configuration for an UART device.
|
||||
pub struct UartConfig {
|
||||
baudrate: Baud,
|
||||
data_bits: DataBits,
|
||||
stop_bits: StopBits,
|
||||
parity: Option<Parity>,
|
||||
}
|
||||
|
||||
/// Common configurations for UART.
|
||||
pub mod common_configs {
|
||||
use super::{DataBits, StopBits, UartConfig};
|
||||
use embedded_time::rate::Baud;
|
||||
|
||||
/// 9600 baud, 8 data bits, no parity, 1 stop bit
|
||||
pub const _9600_8_N_1: UartConfig = UartConfig {
|
||||
baudrate: Baud(9600),
|
||||
data_bits: DataBits::Eight,
|
||||
stop_bits: StopBits::One,
|
||||
parity: None,
|
||||
};
|
||||
|
||||
/// 19200 baud, 8 data bits, no parity, 1 stop bit
|
||||
pub const _19200_8_N_1: UartConfig = UartConfig {
|
||||
baudrate: Baud(19200),
|
||||
data_bits: DataBits::Eight,
|
||||
stop_bits: StopBits::One,
|
||||
parity: None,
|
||||
};
|
||||
|
||||
/// 38400 baud, 8 data bits, no parity, 1 stop bit
|
||||
pub const _38400_8_N_1: UartConfig = UartConfig {
|
||||
baudrate: Baud(38400),
|
||||
data_bits: DataBits::Eight,
|
||||
stop_bits: StopBits::One,
|
||||
parity: None,
|
||||
};
|
||||
|
||||
/// 57600 baud, 8 data bits, no parity, 1 stop bit
|
||||
pub const _57600_8_N_1: UartConfig = UartConfig {
|
||||
baudrate: Baud(57600),
|
||||
data_bits: DataBits::Eight,
|
||||
stop_bits: StopBits::One,
|
||||
parity: None,
|
||||
};
|
||||
|
||||
/// 115200 baud, 8 data bits, no parity, 1 stop bit
|
||||
pub const _115200_8_N_1: UartConfig = UartConfig {
|
||||
baudrate: Baud(115200),
|
||||
data_bits: DataBits::Eight,
|
||||
stop_bits: StopBits::One,
|
||||
parity: None,
|
||||
};
|
||||
}
|
||||
|
||||
/// An UART Peripheral based on an underlying UART device.
|
||||
pub struct UartPeripheral<S: State, D: UartDevice> {
|
||||
device: D,
|
||||
_state: S,
|
||||
config: UartConfig,
|
||||
effective_baudrate: Baud,
|
||||
}
|
||||
|
||||
impl<S: State, D: UartDevice> UartPeripheral<S, D> {
|
||||
fn transition<To: State>(self, state: To) -> UartPeripheral<To, D> {
|
||||
UartPeripheral {
|
||||
device: self.device,
|
||||
config: self.config,
|
||||
effective_baudrate: self.effective_baudrate,
|
||||
_state: state,
|
||||
}
|
||||
}
|
||||
|
||||
/// Releases the underlying device.
|
||||
pub fn free(self) -> D {
|
||||
self.device
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: UartDevice> UartPeripheral<Disabled, D> {
|
||||
/// Enables the provided UART device with the given configuration.
|
||||
pub fn enable(
|
||||
mut device: D,
|
||||
config: UartConfig,
|
||||
frequency: Hertz,
|
||||
) -> Result<UartPeripheral<Enabled, D>, Error> {
|
||||
let effective_baudrate = configure_baudrate(&mut device, &config.baudrate, &frequency)?;
|
||||
|
||||
// Enable the UART, both TX and RX
|
||||
device.uartcr.write(|w| {
|
||||
w.uarten().set_bit();
|
||||
w.txe().set_bit();
|
||||
w.rxe().set_bit();
|
||||
w
|
||||
});
|
||||
|
||||
device.uartlcr_h.write(|w| {
|
||||
w.fen().set_bit();
|
||||
|
||||
set_format(w, &config.data_bits, &config.stop_bits, &config.parity);
|
||||
w
|
||||
});
|
||||
|
||||
device.uartdmacr.write(|w| {
|
||||
w.txdmae().set_bit();
|
||||
w.rxdmae().set_bit();
|
||||
w
|
||||
});
|
||||
|
||||
Ok(UartPeripheral {
|
||||
device,
|
||||
config,
|
||||
effective_baudrate,
|
||||
_state: Enabled,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: UartDevice> UartPeripheral<Enabled, D> {
|
||||
/// Disable this UART Peripheral, falling back to the Disabled state.
|
||||
pub fn disable(self) -> UartPeripheral<Disabled, D> {
|
||||
// Disable the UART, both TX and RX
|
||||
self.device.uartcr.write(|w| {
|
||||
w.uarten().clear_bit();
|
||||
w.txe().clear_bit();
|
||||
w.rxe().clear_bit();
|
||||
w
|
||||
});
|
||||
|
||||
self.transition(Disabled)
|
||||
}
|
||||
|
||||
pub(crate) fn transmit_flushed(&self) -> nb::Result<(), Infallible> {
|
||||
if self.device.uartfr.read().txfe().bit_is_set() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(WouldBlock)
|
||||
}
|
||||
}
|
||||
|
||||
fn uart_is_writable(&self) -> bool {
|
||||
self.device.uartfr.read().txff().bit_is_clear()
|
||||
}
|
||||
|
||||
fn uart_is_readable(&self) -> bool {
|
||||
self.device.uartfr.read().rxfe().bit_is_clear()
|
||||
}
|
||||
|
||||
/// Writes bytes to the UART.
|
||||
/// This function writes as long as it can. As soon that the FIFO is full, if :
|
||||
/// - 0 bytes were written, a WouldBlock Error is returned
|
||||
/// - some bytes were written, it is deemed to be a success
|
||||
/// Upon success, the remaining slice is returned.
|
||||
pub fn write_raw<'d>(&self, data: &'d [u8]) -> nb::Result<&'d [u8], Infallible> {
|
||||
let mut bytes_written = 0;
|
||||
|
||||
for c in data {
|
||||
if !self.uart_is_writable() {
|
||||
if bytes_written == 0 {
|
||||
return Err(WouldBlock);
|
||||
} else {
|
||||
return Ok(&data[bytes_written..]);
|
||||
}
|
||||
}
|
||||
|
||||
self.device.uartdr.write(|w| unsafe {
|
||||
w.data().bits(*c);
|
||||
w
|
||||
});
|
||||
|
||||
bytes_written += 1;
|
||||
}
|
||||
Ok(&data[bytes_written..])
|
||||
}
|
||||
|
||||
/// Reads bytes from the UART.
|
||||
/// This function reads as long as it can. As soon that the FIFO is empty, if :
|
||||
/// - 0 bytes were read, a WouldBlock Error is returned
|
||||
/// - some bytes were read, it is deemed to be a success
|
||||
/// Upon success, the remaining slice is returned.
|
||||
pub fn read_raw<'b>(&self, buffer: &'b mut [u8]) -> nb::Result<&'b mut [u8], ReadError<'b>> {
|
||||
let mut bytes_read = 0;
|
||||
|
||||
Ok(loop {
|
||||
if !self.uart_is_readable() {
|
||||
if bytes_read == 0 {
|
||||
return Err(WouldBlock);
|
||||
} else {
|
||||
break &mut buffer[bytes_read..];
|
||||
}
|
||||
}
|
||||
|
||||
if bytes_read < buffer.len() {
|
||||
let mut error: Option<ReadErrorType> = None;
|
||||
|
||||
if self.device.uartdr.read().oe().bit_is_set() {
|
||||
error = Some(ReadErrorType::Overrun);
|
||||
}
|
||||
|
||||
if self.device.uartdr.read().be().bit_is_set() {
|
||||
error = Some(ReadErrorType::Break);
|
||||
}
|
||||
|
||||
if self.device.uartdr.read().pe().bit_is_set() {
|
||||
error = Some(ReadErrorType::Parity);
|
||||
}
|
||||
|
||||
if self.device.uartdr.read().fe().bit_is_set() {
|
||||
error = Some(ReadErrorType::Framing);
|
||||
}
|
||||
|
||||
if let Some(err_type) = error {
|
||||
return Err(Other(ReadError {
|
||||
err_type,
|
||||
discared: buffer,
|
||||
}));
|
||||
}
|
||||
|
||||
buffer[bytes_read] = self.device.uartdr.read().data().bits();
|
||||
bytes_read += 1;
|
||||
} else {
|
||||
break &mut buffer[bytes_read..];
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Writes bytes to the UART.
|
||||
/// This function blocks until the full buffer has been sent.
|
||||
pub fn write_full_blocking(&self, data: &[u8]) {
|
||||
let mut temp = data;
|
||||
|
||||
while !temp.is_empty() {
|
||||
temp = match self.write_raw(temp) {
|
||||
Ok(remaining) => remaining,
|
||||
Err(WouldBlock) => continue,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads bytes from the UART.
|
||||
/// This function blocks until the full buffer has been received.
|
||||
pub fn read_full_blocking(&self, buffer: &mut [u8]) -> Result<(), ReadErrorType> {
|
||||
let mut offset = 0;
|
||||
|
||||
while offset != buffer.len() {
|
||||
offset += match self.read_raw(&mut buffer[offset..]) {
|
||||
Ok(remaining) => remaining.len(),
|
||||
Err(e) => match e {
|
||||
Other(inner) => return Err(inner.err_type),
|
||||
WouldBlock => continue,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// The PL011 (PrimeCell UART) supports a fractional baud rate divider
|
||||
/// From the wanted baudrate, we calculate the divider's two parts: integer and fractional parts.
|
||||
/// Code inspired from the C SDK.
|
||||
fn calculate_baudrate_dividers(
|
||||
wanted_baudrate: &Baud,
|
||||
frequency: &Hertz,
|
||||
) -> Result<(u16, u16), Error> {
|
||||
// See Chapter 4, Section 2 §7.1 from the datasheet for an explanation of how baudrate is
|
||||
// calculated
|
||||
let baudrate_div = frequency
|
||||
.integer()
|
||||
.checked_mul(8)
|
||||
.and_then(|r| r.checked_div(*wanted_baudrate.integer()))
|
||||
.ok_or(Error::BadArgument)?;
|
||||
|
||||
Ok(match (baudrate_div >> 7, ((baudrate_div & 0x7F) + 1) / 2) {
|
||||
(0, _) => (1, 0),
|
||||
|
||||
(int_part, _) if int_part >= 65535 => (65535, 0),
|
||||
|
||||
(int_part, frac_part) => (int_part as u16, frac_part as u16),
|
||||
})
|
||||
}
|
||||
|
||||
/// Baudrate configuration. Code loosely inspired from the C SDK.
|
||||
fn configure_baudrate(
|
||||
device: &mut dyn UartDevice,
|
||||
wanted_baudrate: &Baud,
|
||||
frequency: &Hertz,
|
||||
) -> Result<Baud, Error> {
|
||||
let (baud_div_int, baud_div_frac) = calculate_baudrate_dividers(wanted_baudrate, frequency)?;
|
||||
|
||||
// First we load the integer part of the divider.
|
||||
device.uartibrd.write(|w| unsafe {
|
||||
w.baud_divint().bits(baud_div_int as u16);
|
||||
w
|
||||
});
|
||||
|
||||
// Then we load the fractional part of the divider.
|
||||
device.uartfbrd.write(|w| unsafe {
|
||||
w.baud_divfrac().bits(baud_div_frac as u8);
|
||||
w
|
||||
});
|
||||
|
||||
// PL011 needs a (dummy) line control register write to latch in the
|
||||
// divisors. We don't want to actually change LCR contents here.
|
||||
device.uartlcr_h.modify(|_, w| w);
|
||||
|
||||
Ok(Baud(
|
||||
(4 * *frequency.integer()) / (64 * baud_div_int + baud_div_frac) as u32,
|
||||
))
|
||||
}
|
||||
|
||||
/// Format configuration. Code loosely inspired from the C SDK.
|
||||
fn set_format<'w>(
|
||||
w: &'w mut UART_LCR_H_Writer,
|
||||
data_bits: &DataBits,
|
||||
stop_bits: &StopBits,
|
||||
parity: &Option<Parity>,
|
||||
) -> &'w mut UART_LCR_H_Writer {
|
||||
match parity {
|
||||
Some(p) => {
|
||||
w.pen().set_bit();
|
||||
match p {
|
||||
Parity::Odd => w.eps().clear_bit(),
|
||||
Parity::Even => w.eps().set_bit(),
|
||||
};
|
||||
}
|
||||
None => {
|
||||
w.pen().bit(false);
|
||||
}
|
||||
};
|
||||
|
||||
unsafe {
|
||||
w.wlen().bits(match data_bits {
|
||||
DataBits::Five => 0b00,
|
||||
DataBits::Six => 0b01,
|
||||
DataBits::Seven => 0b10,
|
||||
DataBits::Eight => 0b11,
|
||||
})
|
||||
};
|
||||
|
||||
match stop_bits {
|
||||
StopBits::One => w.stp2().clear_bit(),
|
||||
StopBits::Two => w.stp2().set_bit(),
|
||||
};
|
||||
|
||||
w
|
||||
}
|
||||
|
||||
impl<D: UartDevice> Read<u8> for UartPeripheral<Enabled, D> {
|
||||
type Error = ReadErrorType;
|
||||
|
||||
fn read(&mut self) -> nb::Result<u8, Self::Error> {
|
||||
let byte: &mut [u8] = &mut [0; 1];
|
||||
|
||||
match self.read_raw(byte) {
|
||||
Ok(_) => Ok(byte[0]),
|
||||
Err(e) => match e {
|
||||
Other(inner) => Err(Other(inner.err_type)),
|
||||
WouldBlock => Err(WouldBlock),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: UartDevice> Write<u8> for UartPeripheral<Enabled, D> {
|
||||
type Error = Infallible;
|
||||
|
||||
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
|
||||
if self.write_raw(&[word]).is_err() {
|
||||
Err(WouldBlock)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
fn flush(&mut self) -> nb::Result<(), Self::Error> {
|
||||
self.transmit_flushed()
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue