diff --git a/boards/rp-pico/examples/pico_ws2812_led.rs b/boards/rp-pico/examples/pico_ws2812_led.rs index ab100ae..cba725b 100644 --- a/boards/rp-pico/examples/pico_ws2812_led.rs +++ b/boards/rp-pico/examples/pico_ws2812_led.rs @@ -119,7 +119,7 @@ fn main() -> ! { // Import the `sin` function for a smooth hue animation from the // Pico rp2040 ROM: - let sin = rp_pico::hal::rom_data::float_funcs::fsin(); + let sin = rp_pico::hal::rom_data::float_funcs::fsin::ptr(); // Create a count down timer for the Ws2812 instance: let timer = Timer::new(pac.TIMER, &mut pac.RESETS); diff --git a/rp2040-hal/Cargo.toml b/rp2040-hal/Cargo.toml index 2b323a5..342b76c 100644 --- a/rp2040-hal/Cargo.toml +++ b/rp2040-hal/Cargo.toml @@ -53,3 +53,4 @@ rt = ["rp2040-pac/rt"] # # embassy-traits = ["embassy_traits", "futures"] alloc = [] +rom-func-cache = [] diff --git a/rp2040-hal/examples/rom_funcs.rs b/rp2040-hal/examples/rom_funcs.rs index 0d38233..2509ac8 100644 --- a/rp2040-hal/examples/rom_funcs.rs +++ b/rp2040-hal/examples/rom_funcs.rs @@ -138,7 +138,7 @@ fn main() -> ! { // Some functions require a look-up in a table. First we do the lookup and // find the function pointer in ROM (you only want to do this once per // function). - let fmul = hal::rom_data::float_funcs::fmul(); + let fmul = hal::rom_data::float_funcs::fmul::ptr(); // Then we can call the function whenever we want let start_rom = cortex_m::peripheral::SYST::get_current(); diff --git a/rp2040-hal/src/rom_data.rs b/rp2040-hal/src/rom_data.rs index 02aa014..d53d78f 100644 --- a/rp2040-hal/src/rom_data.rs +++ b/rp2040-hal/src/rom_data.rs @@ -47,56 +47,160 @@ unsafe fn rom_hword_as_ptr(rom_address: *const u16) -> *const u32 { ptr as *const u32 } -macro_rules! rom_funcs { +macro_rules! declare_rom_function { ( - $( - $(#[$outer:meta])* - $c:literal $name:ident ( - $( $aname:ident : $aty:ty ),* - ) -> $ret:ty ; - )* + $(#[$outer:meta])* + fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty + $lookup:block ) => { - $( - $(#[$outer])* - pub fn $name($( $aname:$aty ),*) -> $ret{ - let func: extern "C" fn( $( $aty ),* ) -> $ret = rom_table_lookup(FUNC_TABLE, *$c); - func($( $aname ),*) + #[doc = r"Additional access for the `"] + #[doc = stringify!($name)] + #[doc = r"` ROM function."] + pub mod $name { + /// Retrieve a function pointer. + #[cfg(not(feature = "rom-func-cache"))] + pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret { + let p: *const u32 = $lookup; + unsafe { + let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } } - )* - } + + /// Retrieve a function pointer. + #[cfg(feature = "rom-func-cache")] + pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret { + use core::sync::atomic::{AtomicU16, Ordering}; + + // All pointers in the ROM fit in 16 bits, so we don't need a + // full width word to store the cached value. + static CACHED_PTR: AtomicU16 = AtomicU16::new(0); + // This is safe because the lookup will always resolve + // to the same value. So even if an interrupt or another + // core starts at the same time, it just repeats some + // work and eventually writes back the correct value. + let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) { + 0 => { + let raw: *const u32 = $lookup; + CACHED_PTR.store(raw as u16, Ordering::Relaxed); + raw + }, + val => val as *const u32, + }; + unsafe { + let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + } + + $(#[$outer])* + pub extern "C" fn $name( $($argname: $ty),* ) -> $ret { + $name::ptr()($($argname),*) + } + }; + + ( + $(#[$outer:meta])* + unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty + $lookup:block + ) => { + #[doc = r"Additional access for the `"] + #[doc = stringify!($name)] + #[doc = r"` ROM function."] + pub mod $name { + /// Retrieve a function pointer. + #[cfg(not(feature = "rom-func-cache"))] + pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret { + let p: *const u32 = $lookup; + unsafe { + let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + + /// Retrieve a function pointer. + #[cfg(feature = "rom-func-cache")] + pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret { + use core::sync::atomic::{AtomicU16, Ordering}; + + // All pointers in the ROM fit in 16 bits, so we don't need a + // full width word to store the cached value. + static CACHED_PTR: AtomicU16 = AtomicU16::new(0); + // This is safe because the lookup will always resolve + // to the same value. So even if an interrupt or another + // core starts at the same time, it just repeats some + // work and eventually writes back the correct value. + let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) { + 0 => { + let raw: *const u32 = $lookup; + CACHED_PTR.store(raw as u16, Ordering::Relaxed); + raw + }, + val => val as *const u32, + }; + unsafe { + let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + } + + $(#[$outer])* + pub unsafe extern "C" fn $name( $($argname: $ty),* ) -> $ret { + $name::ptr()($($argname),*) + } + }; } -macro_rules! rom_funcs_unsafe { +macro_rules! rom_functions { + () => {}; + ( - $( - $(#[$outer:meta])* - $c:literal $name:ident ( - $( $aname:ident : $aty:ty ),* - ) -> $ret:ty ; - )* + $(#[$outer:meta])* + $c:literal fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty; + + $($rest:tt)* ) => { - $( + declare_rom_function! { $(#[$outer])* - pub unsafe fn $name($( $aname:$aty ),*) -> $ret{ - let func: extern "C" fn( $( $aty ),* ) -> $ret = rom_table_lookup(FUNC_TABLE, *$c); - func($( $aname ),*) + fn $name( $($argname: $ty),* ) -> $ret { + $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c) } - )* - } + } + + rom_functions!($($rest)*); + }; + + ( + $(#[$outer:meta])* + $c:literal unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty; + + $($rest:tt)* + ) => { + declare_rom_function! { + $(#[$outer])* + unsafe fn $name( $($argname: $ty),* ) -> $ret { + $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c) + } + } + + rom_functions!($($rest)*); + }; } -rom_funcs! { +rom_functions! { /// Return a count of the number of 1 bits in value. - b"P3" popcount32(value: u32) -> u32; + b"P3" fn popcount32(value: u32) -> u32; /// Return the bits of value in the reverse order. - b"R3" reverse32(value: u32) -> u32; + b"R3" fn reverse32(value: u32) -> u32; /// Return the number of consecutive high order 0 bits of value. If value is zero, returns 32. - b"L3" clz32(value: u32) -> u32; + b"L3" fn clz32(value: u32) -> u32; /// Return the number of consecutive low order 0 bits of value. If value is zero, returns 32. - b"T3" ctz32(value: u32) -> u32; + b"T3" fn ctz32(value: u32) -> u32; /// Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode: /// * gpio_activity_pin_mask is provided to enable an 'activity light' via GPIO attached LED @@ -108,68 +212,66 @@ rom_funcs! { /// * 0 To enable both interfaces (as per cold boot). /// * 1 To disable the USB Mass Storage Interface. /// * 2 to Disable the USB PICOBOOT Interface. - b"UB" reset_to_usb_boot(gpio_activity_pin_mask: u32, disable_interface_mask: u32) -> (); -} + b"UB" fn reset_to_usb_boot(gpio_activity_pin_mask: u32, disable_interface_mask: u32) -> (); -rom_funcs_unsafe! { /// Sets n bytes start at ptr to the value c and returns ptr - b"MS" memset(ptr: *mut u8, c: u8, n: u8) -> *mut u8; + b"MS" unsafe fn memset(ptr: *mut u8, c: u8, n: u8) -> *mut u8; /// Sets n bytes start at ptr to the value c and returns ptr. /// /// Note this is a slightly more efficient variant of _memset that may only /// be used if ptr is word aligned. - b"M4" memset4(ptr: *mut u32, c: u8, n: u32) -> *mut u32; + b"M4" unsafe fn memset4(ptr: *mut u32, c: u8, n: u32) -> *mut u32; /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the /// regions overlap. - b"MC" memcpy(dest: *mut u8, src: *mut u8, n: u32) -> u8; + b"MC" unsafe fn memcpy(dest: *mut u8, src: *mut u8, n: u32) -> u8; /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the /// regions overlap. /// /// Note this is a slightly more efficient variant of _memcpy that may only be /// used if dest and src are word aligned. - b"C4" memcpy44(dest: *mut u32, src: *mut u32, n: u32) -> *mut u8; + b"C4" unsafe fn memcpy44(dest: *mut u32, src: *mut u32, n: u32) -> *mut u8; /// Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads. - b"IF" connect_internal_flash() -> (); + b"IF" unsafe fn connect_internal_flash() -> (); /// First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence. /// /// Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be /// cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This /// function configures the SSI with a fixed SCK clock divisor of /6. - b"EX" flash_exit_xip() -> (); + b"EX" unsafe fn flash_exit_xip() -> (); /// Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a /// block erase command e.g. D8h block erase, and the size of the block erased by this /// command — this function will use the larger block erase where possible, for much higher /// erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of /// 4096 bytes. - b"RE" flash_range_erase(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> (); + b"RE" unsafe fn flash_range_erase(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> (); /// Program data to a range of flash addresses starting at `addr` (and /// offset from the start of flash) and `count` bytes in size. The value /// `addr` must be aligned to a 256-byte boundary, and `count` must be a /// multiple of 256. - b"RP" flash_range_program(addr: u32, data: *const u8, count: usize) -> (); + b"RP" unsafe fn flash_range_program(addr: u32, data: *const u8, count: usize) -> (); /// Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can /// drive the flashchip select as normal. - b"FC" flash_flush_cache() -> (); + b"FC" unsafe fn flash_flush_cache() -> (); /// Configure the SSI to generate a standard 03h serial read command, with 24 address bits, /// upon each XIP access. This is a very slow XIP configuration, but is very widely supported. /// The debugger calls this function after performing a flash erase/programming operation, so /// that the freshly-programmed code and data is visible to the debug host, without having to /// know exactly what kind of flash device is connected. - b"CX" flash_enter_cmd_xip() -> (); + b"CX" unsafe fn flash_enter_cmd_xip() -> (); /// This is the method that is entered by core 1 on reset to wait to be launched by core 0. /// There are few cases where you should call this method (resetting core 1 is much better). /// This method does not return and should only ever be called on core 1. - b"WV" wait_for_vector() -> !; + b"WV" unsafe fn wait_for_vector() -> !; } unsafe fn convert_str(s: *const u8) -> &'static str { @@ -230,18 +332,18 @@ pub mod float_funcs { )* ) => { $( - $(#[$outer])* - pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { - let table: *const usize = $crate::rom_data::soft_float_table() as *const usize; - unsafe { - // This is the entry in the table. Our offset is given as a - // byte offset, but we want the table index (each pointer in - // the table is 4 bytes long) - let entry: *const usize = table.offset($offset / 4); - // Read the pointer from the table - let ptr: usize = core::ptr::read(entry); - // Convert the pointer we read into a function - core::mem::transmute_copy(&ptr) + declare_rom_function! { + $(#[$outer])* + fn $name( $( $aname : $aty ),* ) -> $ret { + let table: *const usize = $crate::rom_data::soft_float_table(); + unsafe { + // This is the entry in the table. Our offset is given as a + // byte offset, but we want the table index (each pointer in + // the table is 4 bytes long) + let entry: *const usize = table.offset($offset / 4); + // Read the pointer from the table + core::ptr::read(entry) as *const u32 + } } } )* @@ -249,97 +351,97 @@ pub mod float_funcs { } make_functions! { - /// Returns a function that will calculate `a + b` + /// Calculates `a + b` 0x00 fadd(a: f32, b: f32) -> f32; - /// Returns a function that will calculate `a - b` + /// Calculates `a - b` 0x04 fsub(a: f32, b: f32) -> f32; - /// Returns a function that will calculate `a * b` + /// Calculates `a * b` 0x08 fmul(a: f32, b: f32) -> f32; - /// Returns a function that will calculate `a / b` + /// Calculates `a / b` 0x0c fdiv(a: f32, b: f32) -> f32; // 0x10 and 0x14 are deprecated - /// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative) + /// Calculates `sqrt(v)` (or return -Infinity if v is negative) 0x18 fsqrt(v: f32) -> f32; - /// Returns a function that will convert an f32 to a signed integer, + /// Converts an f32 to a signed integer, /// rounding towards -Infinity, and clamping the result to lie within the /// range `-0x80000000` to `0x7FFFFFFF` 0x1c float_to_int(v: f32) -> i32; - /// Returns a function that will convert an f32 to an signed fixed point + /// Converts an f32 to an signed fixed point /// integer representation where n specifies the position of the binary /// point in the resulting fixed point representation, e.g. /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, /// and clamps the resulting integer to lie within the range `0x00000000` to /// `0xFFFFFFFF` 0x20 float_to_fix(v: f32, n: i32) -> i32; - /// Returns a function that will convert an f32 to an unsigned integer, + /// Converts an f32 to an unsigned integer, /// rounding towards -Infinity, and clamping the result to lie within the /// range `0x00000000` to `0xFFFFFFFF` 0x24 float_to_uint(v: f32) -> u32; - /// Returns a function that will convert an f32 to an unsigned fixed point + /// Converts an f32 to an unsigned fixed point /// integer representation where n specifies the position of the binary /// point in the resulting fixed point representation, e.g. /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, /// and clamps the resulting integer to lie within the range `0x00000000` to /// `0xFFFFFFFF` 0x28 float_to_ufix(v: f32, n: i32) -> u32; - /// Returns a function that will convert a signed integer to the nearest + /// Converts a signed integer to the nearest /// f32 value, rounding to even on tie 0x2c int_to_float(v: i32) -> f32; - /// Returns a function that will convert a signed fixed point integer + /// Converts a signed fixed point integer /// representation to the nearest f32 value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so `f = /// nearest(v/(2^n))` 0x30 fix_to_float(v: i32, n: i32) -> f32; - /// Returns a function that will convert an unsigned integer to the nearest + /// Converts an unsigned integer to the nearest /// f32 value, rounding to even on tie 0x34 uint_to_float(v: u32) -> f32; - /// Returns a function that will convert an unsigned fixed point integer + /// Converts an unsigned fixed point integer /// representation to the nearest f32 value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so `f = /// nearest(v/(2^n))` 0x38 ufix_to_float(v: u32, n: i32) -> f32; - /// Returns a function that will calculate the cosine of `angle`. The value + /// Calculates the cosine of `angle`. The value /// of `angle` is in radians, and must be in the range `-1024` to `1024` 0x3c fcos(angle: f32) -> f32; - /// Returns a function that will calculate the sine of `angle`. The value of + /// Calculates the sine of `angle`. The value of /// `angle` is in radians, and must be in the range `-1024` to `1024` 0x40 fsin(angle: f32) -> f32; - /// Returns a function that will calculate the tangent of `angle`. The value + /// Calculates the tangent of `angle`. The value /// of `angle` is in radians, and must be in the range `-1024` to `1024` 0x44 ftan(angle: f32) -> f32; // 0x48 is deprecated - /// Returns a function that will calculate the exponential value of `v`, + /// Calculates the exponential value of `v`, /// i.e. `e ** v` 0x4c fexp(v: f32) -> f32; - /// Returns a function that will calculate the natural logarithm of `v`. If `v <= 0` return -Infinity + /// Calculates the natural logarithm of `v`. If `v <= 0` return -Infinity 0x50 fln(v: f32) -> f32; // These are only on BootROM v2 or higher - /// Returns a function that will compare two floating point numbers, returning: + /// Compares two floating point numbers, returning: /// • 0 if a == b /// • -1 if a < b /// • 1 if a > b 0x54 fcmp(a: f32, b: f32) -> i32; - /// Returns a function that will compute the arc tangent of `y/x` using the + /// Computes the arc tangent of `y/x` using the /// signs of arguments to determine the correct quadrant 0x58 fatan2(y: f32, x: f32) -> f32; - /// Returns a function that will convert a signed 64-bit integer to the + /// Converts a signed 64-bit integer to the /// nearest f32 value, rounding to even on tie 0x5c int64_to_float(v: i64) -> f32; - /// Returns a function that will convert a signed fixed point 64-bit integer + /// Converts a signed fixed point 64-bit integer /// representation to the nearest f32 value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so `f = /// nearest(v/(2^n))` 0x60 fix64_to_float(v: i64, n: i32) -> f32; - /// Returns a function that will convert an unsigned 64-bit integer to the + /// Converts an unsigned 64-bit integer to the /// nearest f32 value, rounding to even on tie 0x64 uint64_to_float(v: u64) -> f32; - /// Returns a function that will convert an unsigned fixed point 64-bit + /// Converts an unsigned fixed point 64-bit /// integer representation to the nearest f32 value, rounding to even on /// tie. `n` specifies the position of the binary point in fixed point, so /// `f = nearest(v/(2^n))` @@ -348,18 +450,18 @@ pub mod float_funcs { /// and clamping the result to lie within the range `-0x8000000000000000` to /// `0x7FFFFFFFFFFFFFFF` 0x6c float_to_int64(v: f32) -> i64; - /// Returns a function that will convert an f32 to a signed fixed point + /// Converts an f32 to a signed fixed point /// 64-bit integer representation where n specifies the position of the /// binary point in the resulting fixed point representation - e.g. `f(0.5f, /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the /// resulting integer to lie within the range `-0x8000000000000000` to /// `0x7FFFFFFFFFFFFFFF` 0x70 float_to_fix64(v: f32, n: i32) -> f32; - /// Returns a function that will convert an f32 to an unsigned 64-bit + /// Converts an f32 to an unsigned 64-bit /// integer, rounding towards -Infinity, and clamping the result to lie /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF` 0x74 float_to_uint64(v: f32) -> u64; - /// Returns a function that will convert an f32 to an unsigned fixed point + /// Converts an f32 to an unsigned fixed point /// 64-bit integer representation where n specifies the position of the /// binary point in the resulting fixed point representation, e.g. `f(0.5f, /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the @@ -384,18 +486,18 @@ pub mod double_funcs { )* ) => { $( - $(#[$outer])* - pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { - let table: *const usize = $crate::rom_data::soft_double_table() as *const usize; - unsafe { - // This is the entry in the table. Our offset is given as a - // byte offset, but we want the table index (each pointer in - // the table is 4 bytes long) - let entry: *const usize = table.offset($offset / 4); - // Read the pointer from the table - let ptr: usize = core::ptr::read(entry); - // Convert the pointer we read into a function - core::mem::transmute_copy(&ptr) + declare_rom_function! { + $(#[$outer])* + fn $name( $( $aname : $aty ),* ) -> $ret { + let table: *const usize = $crate::rom_data::soft_double_table(); + unsafe { + // This is the entry in the table. Our offset is given as a + // byte offset, but we want the table index (each pointer in + // the table is 4 bytes long) + let entry: *const usize = table.offset($offset / 4); + // Read the pointer from the table + core::ptr::read(entry) as *const u32 + } } } )* @@ -403,97 +505,97 @@ pub mod double_funcs { } make_double_funcs! { - /// Returns a function that will calculate `a + b` + /// Calculates `a + b` 0x00 dadd(a: f64, b: f64) -> f64; - /// Returns a function that will calculate `a - b` + /// Calculates `a - b` 0x04 dsub(a: f64, b: f64) -> f64; - /// Returns a function that will calculate `a * b` + /// Calculates `a * b` 0x08 dmul(a: f64, b: f64) -> f64; - /// Returns a function that will calculate `a / b` + /// Calculates `a / b` 0x0c ddiv(a: f64, b: f64) -> f64; // 0x10 and 0x14 are deprecated - /// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative) + /// Calculates `sqrt(v)` (or return -Infinity if v is negative) 0x18 dsqrt(v: f64) -> f64; - /// Returns a function that will convert an f64 to a signed integer, + /// Converts an f64 to a signed integer, /// rounding towards -Infinity, and clamping the result to lie within the /// range `-0x80000000` to `0x7FFFFFFF` 0x1c double_to_int(v: f64) -> i32; - /// Returns a function that will convert an f64 to an signed fixed point + /// Converts an f64 to an signed fixed point /// integer representation where n specifies the position of the binary /// point in the resulting fixed point representation, e.g. /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, /// and clamps the resulting integer to lie within the range `0x00000000` to /// `0xFFFFFFFF` 0x20 double_to_fix(v: f64, n: i32) -> i32; - /// Returns a function that will convert an f64 to an unsigned integer, + /// Converts an f64 to an unsigned integer, /// rounding towards -Infinity, and clamping the result to lie within the /// range `0x00000000` to `0xFFFFFFFF` 0x24 double_to_uint(v: f64) -> u32; - /// Returns a function that will convert an f64 to an unsigned fixed point + /// Converts an f64 to an unsigned fixed point /// integer representation where n specifies the position of the binary /// point in the resulting fixed point representation, e.g. /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, /// and clamps the resulting integer to lie within the range `0x00000000` to /// `0xFFFFFFFF` 0x28 double_to_ufix(v: f64, n: i32) -> u32; - /// Returns a function that will convert a signed integer to the nearest + /// Converts a signed integer to the nearest /// double value, rounding to even on tie 0x2c int_to_double(v: i32) -> f64; - /// Returns a function that will convert a signed fixed point integer + /// Converts a signed fixed point integer /// representation to the nearest double value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so `f = /// nearest(v/(2^n))` 0x30 fix_to_double(v: i32, n: i32) -> f64; - /// Returns a function that will convert an unsigned integer to the nearest + /// Converts an unsigned integer to the nearest /// double value, rounding to even on tie 0x34 uint_to_double(v: u32) -> f64; - /// Returns a function that will convert an unsigned fixed point integer + /// Converts an unsigned fixed point integer /// representation to the nearest double value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so f = /// nearest(v/(2^n)) 0x38 ufix_to_double(v: u32, n: i32) -> f64; - /// Returns a function that will calculate the cosine of `angle`. The value + /// Calculates the cosine of `angle`. The value /// of `angle` is in radians, and must be in the range `-1024` to `1024` 0x3c dcos(angle: f64) -> f64; - /// Returns a function that will calculate the sine of `angle`. The value of + /// Calculates the sine of `angle`. The value of /// `angle` is in radians, and must be in the range `-1024` to `1024` 0x40 dsin(angle: f64) -> f64; - /// Returns a function that will calculate the tangent of `angle`. The value + /// Calculates the tangent of `angle`. The value /// of `angle` is in radians, and must be in the range `-1024` to `1024` 0x44 dtan(angle: f64) -> f64; // 0x48 is deprecated - /// Returns a function that will calculate the exponential value of `v`, + /// Calculates the exponential value of `v`, /// i.e. `e ** v` 0x4c dexp(v: f64) -> f64; - /// Returns a function that will calculate the natural logarithm of v. If v <= 0 return -Infinity + /// Calculates the natural logarithm of v. If v <= 0 return -Infinity 0x50 dln(v: f64) -> f64; // These are only on BootROM v2 or higher - /// Returns a function that will compare two floating point numbers, returning: + /// Compares two floating point numbers, returning: /// • 0 if a == b /// • -1 if a < b /// • 1 if a > b 0x54 dcmp(a: f64, b: f64) -> i32; - /// Returns a function that will compute the arc tangent of `y/x` using the + /// Computes the arc tangent of `y/x` using the /// signs of arguments to determine the correct quadrant 0x58 datan2(y: f64, x: f64) -> f64; - /// Returns a function that will convert a signed 64-bit integer to the + /// Converts a signed 64-bit integer to the /// nearest double value, rounding to even on tie 0x5c int64_to_double(v: i64) -> f64; - /// Returns a function that will convert a signed fixed point 64-bit integer + /// Converts a signed fixed point 64-bit integer /// representation to the nearest double value, rounding to even on tie. `n` /// specifies the position of the binary point in fixed point, so `f = /// nearest(v/(2^n))` 0x60 fix64_to_doubl(v: i64, n: i32) -> f64; - /// Returns a function that will convert an unsigned 64-bit integer to the + /// Converts an unsigned 64-bit integer to the /// nearest double value, rounding to even on tie 0x64 uint64_to_double(v: u64) -> f64; - /// Returns a function that will convert an unsigned fixed point 64-bit + /// Converts an unsigned fixed point 64-bit /// integer representation to the nearest double value, rounding to even on /// tie. `n` specifies the position of the binary point in fixed point, so /// `f = nearest(v/(2^n))` @@ -502,25 +604,25 @@ pub mod double_funcs { /// and clamping the result to lie within the range `-0x8000000000000000` to /// `0x7FFFFFFFFFFFFFFF` 0x6c double_to_int64(v: f64) -> i64; - /// Returns a function that will convert an f64 to a signed fixed point + /// Converts an f64 to a signed fixed point /// 64-bit integer representation where n specifies the position of the /// binary point in the resulting fixed point representation - e.g. `f(0.5f, /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the /// resulting integer to lie within the range `-0x8000000000000000` to /// `0x7FFFFFFFFFFFFFFF` 0x70 double_to_fix64(v: f64, n: i32) -> i64; - /// Returns a function that will convert an f64 to an unsigned 64-bit + /// Converts an f64 to an unsigned 64-bit /// integer, rounding towards -Infinity, and clamping the result to lie /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF` 0x74 double_to_uint64(v: f64) -> u64; - /// Returns a function that will convert an f64 to an unsigned fixed point + /// Converts an f64 to an unsigned fixed point /// 64-bit integer representation where n specifies the position of the /// binary point in the resulting fixed point representation, e.g. `f(0.5f, /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the /// resulting integer to lie within the range `0x0000000000000000` to /// `0xFFFFFFFFFFFFFFFF` 0x78 double_to_ufix64(v: f64, n: i32) -> u64; - /// Returns a function that will convert an f64 to an f32 + /// Converts an f64 to an f32 0x7c double_to_float(v: f64) -> f32; } }