mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-09 20:11:31 +11:00
rom: Add comments to rom content
This commit is contained in:
parent
6eccce595c
commit
a9a8df8c79
|
@ -253,14 +253,24 @@ float_funcs! {
|
|||
/// to even on tie. n specifies the position of the binary point in fixed point, so
|
||||
/// f = nearest(v/2^n).
|
||||
0x68 ufix64_to_float(v: u64, n: i32) -> f32;
|
||||
/// a
|
||||
/// Convert a float to a signed 64-bit integer, rounding towards -Infinity, and clamping
|
||||
/// the result to lie within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF
|
||||
0x6c float_to_int64(v: f32) -> i64;
|
||||
/// a
|
||||
/// Convert a float to a signed fixed point 64-bit integer representation where n
|
||||
/// specifies the position of the binary point in the resulting fixed point representation -
|
||||
/// e.g. _float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and
|
||||
/// clamps the resulting integer to lie within the range -0x8000000000000000 to
|
||||
/// 0x7FFFFFFFFFFFFFF
|
||||
0x70 float_to_fix64(v: f32, n: i32) -> f32;
|
||||
/// a
|
||||
/// Convert a float to an unsigned 64-bit integer, rounding towards -Infinity, and
|
||||
/// clamping the result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF
|
||||
0x74 float_to_uint64(v: f32) -> u64;
|
||||
/// a
|
||||
0x78 float_to_ufix64(v: f32, n: i32) -> u64;
|
||||
/// Convert a float to an unsigned fixed point 64-bit integer representation where n
|
||||
/// specifies the position of the binary point in the resulting fixed point representation,
|
||||
/// e.g. _float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and
|
||||
/// clamps the resulting integer to lie within the range 0x0000000000000000 to
|
||||
/// 0xFFFFFFFFFFFFFFFF
|
||||
/// 0x78 float_to_ufix64(v: f32, n: i32) -> u64;
|
||||
/// Converts a float to a double.
|
||||
0x7c float_to_double(v: f32) -> f64;
|
||||
}
|
||||
|
@ -287,62 +297,83 @@ macro_rules! double_funcs {
|
|||
}
|
||||
|
||||
double_funcs! {
|
||||
/// a
|
||||
/// Return a + b
|
||||
0x00 dadd(a: f64, b: f64) -> f64;
|
||||
/// a
|
||||
/// Return a - b
|
||||
0x04 dsub(a: f64, b: f64) -> f64;
|
||||
/// a
|
||||
/// Return a * b
|
||||
0x08 dmul(a: f64, b: f64) -> f64;
|
||||
/// a
|
||||
/// Return a / b
|
||||
0x0c ddiv(a: f64, b: f64) -> f64;
|
||||
/// a
|
||||
/// Return sqrt(v) or -Infinity if v is negative
|
||||
0x18 dsqrt(v: f64) -> f64;
|
||||
/// a
|
||||
/// Convert a double to a signed integer, rounding towards -Infinity, and clamping the result to lie
|
||||
/// within the range -0x80000000 to 0x7FFFFFFF
|
||||
0x1c double_to_int(v: f64) -> i32;
|
||||
/// a
|
||||
/// Convert a double to an unsigned fixed point integer representation where n specifies the
|
||||
/// position of the binary point in the resulting fixed point representation, e.g. _double2ufix(0.5f,
|
||||
/// 16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie
|
||||
/// within the range 0x00000000 to 0xFFFFFFFF
|
||||
0x20 double_to_fix(v: f64, n: i32) -> i32;
|
||||
/// a
|
||||
0x24 double_to_uint(v: f64) -> u32;
|
||||
/// a
|
||||
/// Convert a double to an unsigned integer, rounding towards -Infinity, and clamping the result
|
||||
/// to lie within the range 0x00000000 to 0xFFFFFFFF 0x24 double_to_uint(v: f64) -> u32;
|
||||
0x28 double_to_ufix(v: f64, n: i32) -> u32;
|
||||
/// a
|
||||
/// Convert a signed integer to the nearest double value, rounding to even on tie
|
||||
0x2c int_to_double(v: i32) -> f64;
|
||||
/// a
|
||||
/// Convert a signed fixed point integer representation to the nearest double value, rounding to
|
||||
/// even on tie. n specifies the position of the binary point in fixed point, so f = nearest(v/(2^n))
|
||||
0x30 fix_to_double(v: i32, n: i32) -> f64;
|
||||
/// a
|
||||
/// Convert an unsigned integer to the nearest double value, rounding to even on tie
|
||||
0x34 uint_to_double(v: u32) -> f64;
|
||||
/// a
|
||||
/// Convert an unsigned fixed point integer representation to the nearest double value, rounding
|
||||
/// to even on tie. n specifies the position of the binary point in fixed point, so
|
||||
/// f = nearest(v/(2^n))
|
||||
0x38 ufix_to_double(v: u32, n: i32) -> f64;
|
||||
/// a
|
||||
/// Return the cosine of angle. angle is in radians, and must be in the range -1024 to 1024
|
||||
0x3c dcos(angle: f64) -> f64;
|
||||
/// a
|
||||
/// Return the sine of angle. angle is in radians, and must be in the range -1024 to 1024
|
||||
0x40 dsin(angle: f64) -> f64;
|
||||
/// a
|
||||
/// Return the tangent of angle. angle is in radians, and must be in the range -1024 to 1024
|
||||
0x44 dtan(angle: f64) -> f64;
|
||||
/// a
|
||||
/// Return the exponential value of v, i.e. so
|
||||
0x4c dexp(v: f64) -> f64;
|
||||
/// a
|
||||
/// Return the natural logarithm of v. If v <= 0 return -Infinity
|
||||
0x50 dln(v: f64) -> f64;
|
||||
/// a
|
||||
/// Compares two floating point numbers, returning:
|
||||
/// • 0 if a == b
|
||||
/// • -1 if a < b
|
||||
/// • 1 if a > b
|
||||
0x54 dcmp(a: f64, b: f64) -> i32;
|
||||
/// a
|
||||
/// Computes the arc tangent of y/x using the signs of arguments to determine the correct
|
||||
/// quadrant
|
||||
0x58 datan2(y: f64, x: f64) -> f64;
|
||||
/// a
|
||||
/// Convert a signed 64-bit integer to the nearest double value, rounding to even on tie
|
||||
0x5c int64_to_double(v: i64) -> f64;
|
||||
/// a
|
||||
/// Convert a signed fixed point 64-bit integer representation to the nearest double value,
|
||||
/// rounding to even on tie. n specifies the position of the binary point in fixed point, so
|
||||
/// f = nearest(v/(2^n))
|
||||
0x60 fix64_to_doubl(v: i64, n: i32) -> f64;
|
||||
/// a
|
||||
/// Convert an unsigned 64-bit integer to the nearest double value, rounding to even on tie
|
||||
0x64 uint64_to_double(v: u64) -> f64;
|
||||
/// a
|
||||
/// Convert an unsigned fixed point 64-bit integer representation to the nearest double value,
|
||||
/// rounding to even on tie. n specifies the position of the binary point in fixed point, so
|
||||
/// f = nearest(v/(2^n))
|
||||
0x68 ufix64_to_double(v: u64, n: i32) -> f64;
|
||||
/// a
|
||||
/// Convert a double to a signed 64-bit integer, rounding towards -Infinity, and
|
||||
0x6c double_to_int64(v: f64) -> i64;
|
||||
/// a
|
||||
/// Convert a double to a signed fixed point 64-bit integer representation where n specifies the
|
||||
/// position of the binary point in the resulting fixed point representation - e.g. _double2fix(0.5f,
|
||||
/// 16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie
|
||||
/// within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF
|
||||
0x70 double_to_fix64(v: f64, n: i32) -> i64;
|
||||
/// a
|
||||
/// Convert a double to an unsigned 64-bit integer, rounding towards -Infinity, and clamping the
|
||||
/// result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF
|
||||
0x74 double_to_uint64(v: f64) -> u64;
|
||||
/// a
|
||||
/// Convert a double to an unsigned fixed point 64-bit integer representation where n specifies
|
||||
/// the position of the binary point in the resulting fixed point representation, e.g.
|
||||
/// _double2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps the
|
||||
/// resulting integer to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF
|
||||
0x78 double_to_ufix64(v: f64, n: i32) -> u64;
|
||||
/// a
|
||||
/// Converts a double to a float
|
||||
0x7c double_to_float(v: f64) -> f32;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue