mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-11 04:51:31 +11:00
Add pio pwm example (#365)
* Add pio pwm example This adds a more advance pio example which uses side set and instruction injection
This commit is contained in:
parent
e5897ca7a4
commit
b12aecb51c
|
@ -34,6 +34,8 @@ ws2812-pio = "0.3.0"
|
|||
ssd1306 = "0.7.0"
|
||||
embedded-graphics = "0.7.1"
|
||||
hd44780-driver = "0.4.0"
|
||||
pio = "0.2.0"
|
||||
pio-proc = "0.2.1"
|
||||
|
||||
defmt = "0.2.0"
|
||||
defmt-rtt = "0.2.0"
|
||||
|
|
166
boards/rp-pico/examples/pico_pio_pwm.rs
Normal file
166
boards/rp-pico/examples/pico_pio_pwm.rs
Normal file
|
@ -0,0 +1,166 @@
|
|||
//! # Pico PIO PWM Blink Example
|
||||
//!
|
||||
//! Fades the LED on a Pico board using the PIO peripheral with an pwm program.
|
||||
//!
|
||||
//! This will fade in the LED attached to GP25, which is the pin the Pico
|
||||
//! uses for the on-board LED.
|
||||
//!
|
||||
//! This example uses a few advance pio tricks such as side setting pins and instruction injection.
|
||||
//!
|
||||
//! See the `Cargo.toml` file for Copyright and license details. Except for the pio program which is subject to a different license.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use defmt::info;
|
||||
use defmt_rtt as _;
|
||||
// The macro for our start-up function
|
||||
use rp_pico::entry;
|
||||
|
||||
// Time handling traits
|
||||
use embedded_time::rate::*;
|
||||
|
||||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||
// be linked)
|
||||
use panic_halt as _;
|
||||
|
||||
// Pull in any important traits
|
||||
use rp_pico::hal::prelude::*;
|
||||
|
||||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||
// register access
|
||||
use rp_pico::hal::pac;
|
||||
|
||||
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||||
// higher-level drivers.
|
||||
use rp_pico::hal;
|
||||
|
||||
// Import pio crates
|
||||
use hal::pio::{PIOBuilder, Running, StateMachine, Tx, ValidStateMachine, SM0};
|
||||
use pio::{InstructionOperands, OutDestination};
|
||||
use pio_proc::pio_file;
|
||||
|
||||
/// Set pio pwm period
|
||||
///
|
||||
/// This uses a sneaky trick to set a second value besides the duty cycle.
|
||||
/// We first write a value to the tx fifo. But instead of the normal instructions we
|
||||
/// have stopped the state machine and inject our own instructions that move the written value to the ISR.
|
||||
fn pio_pwm_set_period<T: ValidStateMachine>(
|
||||
sm: StateMachine<(hal::pac::PIO0, SM0), Running>,
|
||||
tx: &mut Tx<T>,
|
||||
period: u32,
|
||||
) -> StateMachine<(hal::pac::PIO0, SM0), Running> {
|
||||
// To make sure the inserted instructions actually use our newly written value
|
||||
// We first busy loop to empty the queue. (Which typically should be the case)
|
||||
while !tx.is_empty() {}
|
||||
|
||||
let mut sm = sm.stop();
|
||||
tx.write(period);
|
||||
sm.exec_instruction(
|
||||
InstructionOperands::PULL {
|
||||
if_empty: false,
|
||||
block: false,
|
||||
}
|
||||
.encode(),
|
||||
);
|
||||
sm.exec_instruction(
|
||||
InstructionOperands::OUT {
|
||||
destination: OutDestination::ISR,
|
||||
bit_count: 32,
|
||||
}
|
||||
.encode(),
|
||||
);
|
||||
sm.start()
|
||||
}
|
||||
|
||||
/// Set pio pwm duty cycle
|
||||
///
|
||||
/// The value written to the TX FIFO is used directly by the normal pio program
|
||||
fn pio_pwm_set_level<T: ValidStateMachine>(tx: &mut Tx<T>, level: u32) {
|
||||
// Write duty cycle to TX Fifo
|
||||
tx.write(level);
|
||||
}
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||
/// as soon as all global variables are initialised.
|
||||
///
|
||||
/// The function configures the RP2040 peripherals, then fades the LED in an
|
||||
/// infinite loop.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Grab our singleton objects
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
let core = pac::CorePeripherals::take().unwrap();
|
||||
|
||||
// Set up the watchdog driver - needed by the clock setup code
|
||||
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
// Configure the clocks
|
||||
//
|
||||
// The default is to generate a 125 MHz system clock
|
||||
let clocks = hal::clocks::init_clocks_and_plls(
|
||||
rp_pico::XOSC_CRYSTAL_FREQ,
|
||||
pac.XOSC,
|
||||
pac.CLOCKS,
|
||||
pac.PLL_SYS,
|
||||
pac.PLL_USB,
|
||||
&mut pac.RESETS,
|
||||
&mut watchdog,
|
||||
)
|
||||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// The single-cycle I/O block controls our GPIO pins
|
||||
let sio = hal::Sio::new(pac.SIO);
|
||||
|
||||
// Set the pins up according to their function on this particular board
|
||||
let pins = rp_pico::Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
|
||||
// The delay object lets us wait for specified amounts of time (in
|
||||
// milliseconds)
|
||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
||||
|
||||
let (mut pio0, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS);
|
||||
|
||||
// Create a pio program
|
||||
let program = pio_file!("./examples/pwm.pio", select_program("pwm"),);
|
||||
let installed = pio0.install(&program.program).unwrap();
|
||||
|
||||
// Set gpio25 to pio
|
||||
let _led: hal::gpio::Pin<_, hal::gpio::FunctionPio0> = pins.led.into_mode();
|
||||
let led_pin_id = 25;
|
||||
|
||||
// Build the pio program and set pin both for set and side set!
|
||||
// We are running with the default divider which is 1 (max speed)
|
||||
let (mut sm, _, mut tx) = PIOBuilder::from_program(installed)
|
||||
.set_pins(led_pin_id, 1)
|
||||
.side_set_pin_base(led_pin_id)
|
||||
.build(sm0);
|
||||
|
||||
// Set pio pindir for gpio25
|
||||
sm.set_pindirs([(led_pin_id, hal::pio::PinDir::Output)]);
|
||||
|
||||
// Start state machine
|
||||
let sm = sm.start();
|
||||
|
||||
// Set period
|
||||
pio_pwm_set_period(sm, &mut tx, u16::MAX as u32 - 1);
|
||||
|
||||
// Loop forever and adjust duty cycle to make te led brighter
|
||||
let mut level = 0;
|
||||
loop {
|
||||
info!("Level = {}", level);
|
||||
pio_pwm_set_level(&mut tx, level * level);
|
||||
level = (level + 1) % 256;
|
||||
delay.delay_ms(10);
|
||||
}
|
||||
}
|
||||
|
||||
// End of file
|
31
boards/rp-pico/examples/pwm.pio
Normal file
31
boards/rp-pico/examples/pwm.pio
Normal file
|
@ -0,0 +1,31 @@
|
|||
;
|
||||
; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
;
|
||||
; SPDX-License-Identifier: BSD-3-Clause
|
||||
;
|
||||
|
||||
; Side-set pin 0 is used for PWM output
|
||||
|
||||
.program pwm
|
||||
.side_set 1 opt
|
||||
|
||||
pull noblock side 0 ; Pull from FIFO to OSR if available, else copy X to OSR.
|
||||
mov x, osr ; Copy most-recently-pulled value back to scratch X
|
||||
mov y, isr ; ISR contains PWM period. Y used as counter.
|
||||
countloop:
|
||||
jmp x!=y noset ; Set pin high if X == Y, keep the two paths length matched
|
||||
jmp skip side 1
|
||||
noset:
|
||||
nop ; Single dummy cycle to keep the two paths the same length
|
||||
skip:
|
||||
jmp y-- countloop ; Loop until Y hits 0, then pull a fresh PWM value from FIFO
|
||||
|
||||
% c-sdk {
|
||||
static inline void pwm_program_init(PIO pio, uint sm, uint offset, uint pin) {
|
||||
pio_gpio_init(pio, pin);
|
||||
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
|
||||
pio_sm_config c = pwm_program_get_default_config(offset);
|
||||
sm_config_set_sideset_pins(&c, pin);
|
||||
pio_sm_init(pio, sm, offset, &c);
|
||||
}
|
||||
%}
|
Loading…
Reference in a new issue