mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-11 13:01:30 +11:00
Merge pull request #279 from jannic/dht11_example
Add an example reading a dht11 sensor
This commit is contained in:
commit
baff438f53
|
@ -45,6 +45,7 @@ panic-halt = "0.2.0"
|
|||
rp2040-boot2 = "0.2.0"
|
||||
hd44780-driver = "0.4.0"
|
||||
pio-proc = "0.1.0"
|
||||
dht-sensor = "0.2.1"
|
||||
|
||||
[features]
|
||||
rt = ["rp2040-pac/rt"]
|
||||
|
|
148
rp2040-hal/examples/dht11.rs
Normal file
148
rp2040-hal/examples/dht11.rs
Normal file
|
@ -0,0 +1,148 @@
|
|||
//! # DHT11 Example
|
||||
//!
|
||||
//! This application demonstrates how to read a DHT11 sensor on the RP2040.
|
||||
//!
|
||||
//! It may need to be adapted to your particular board layout and/or pin assignment.
|
||||
//! In this example, the DHT11 data pin should be connected to GPIO28.
|
||||
//!
|
||||
//! NOTE: The DHT11 driver only works reliably when compiled in release mode.
|
||||
//!
|
||||
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
// The macro for our start-up function
|
||||
use cortex_m_rt::entry;
|
||||
|
||||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||
// be linked)
|
||||
use panic_halt as _;
|
||||
|
||||
// Alias for our HAL crate
|
||||
use rp2040_hal as hal;
|
||||
|
||||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||
// register access
|
||||
use hal::pac;
|
||||
|
||||
// Some traits we need
|
||||
use embedded_hal::digital::v2::InputPin;
|
||||
use embedded_hal::digital::v2::OutputPin;
|
||||
use embedded_time::fixed_point::FixedPoint;
|
||||
use hal::gpio::dynpin::DynPin;
|
||||
use hal::Clock;
|
||||
|
||||
/// The linker will place this boot block at the start of our program image. We
|
||||
/// need this to help the ROM bootloader get our code up and running.
|
||||
#[link_section = ".boot2"]
|
||||
#[used]
|
||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
||||
|
||||
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
||||
/// if your board has a different frequency
|
||||
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
||||
|
||||
use dht_sensor::{dht11, DhtReading};
|
||||
|
||||
/// A wrapper for DynPin, implementing both InputPin and OutputPin, to simulate
|
||||
/// an open-drain pin as needed by the wire protocol the DHT11 sensor speaks.
|
||||
/// https://how2electronics.com/interfacing-dht11-temperature-humidity-sensor-with-raspberry-pi-pico/
|
||||
struct InOutPin {
|
||||
inner: DynPin,
|
||||
}
|
||||
|
||||
impl InOutPin {
|
||||
fn new(inner: DynPin) -> Self {
|
||||
Self { inner }
|
||||
}
|
||||
}
|
||||
|
||||
impl InputPin for InOutPin {
|
||||
type Error = rp2040_hal::gpio::Error;
|
||||
fn is_high(&self) -> Result<bool, <Self as embedded_hal::digital::v2::InputPin>::Error> {
|
||||
self.inner.is_high()
|
||||
}
|
||||
fn is_low(&self) -> Result<bool, <Self as embedded_hal::digital::v2::InputPin>::Error> {
|
||||
self.inner.is_low()
|
||||
}
|
||||
}
|
||||
|
||||
impl OutputPin for InOutPin {
|
||||
type Error = rp2040_hal::gpio::Error;
|
||||
fn set_low(&mut self) -> Result<(), <Self as embedded_hal::digital::v2::OutputPin>::Error> {
|
||||
// To actively pull the pin low, it must also be configured as a (readable) output pin
|
||||
self.inner.into_readable_output();
|
||||
// In theory, we should set the pin to low first, to make sure we never actively
|
||||
// pull it up. But if we try it on the input pin, we get Err(Gpio(InvalidPinType)).
|
||||
self.inner.set_low()?;
|
||||
Ok(())
|
||||
}
|
||||
fn set_high(&mut self) -> Result<(), <Self as embedded_hal::digital::v2::OutputPin>::Error> {
|
||||
// To set the open-drain pin to high, just disable the output driver by changing the
|
||||
// pin to input mode with pull-up. That way, the DHT11 can still pull the data line down
|
||||
// to send its response.
|
||||
self.inner.into_pull_up_input();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||
/// as soon as all global variables are initialised.
|
||||
///
|
||||
/// The function configures the RP2040 peripherals, assigns GPIO 28 to the
|
||||
/// DHT11 driver, and takes a single measurement.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Grab our singleton objects
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
let core = pac::CorePeripherals::take().unwrap();
|
||||
|
||||
// Set up the watchdog driver - needed by the clock setup code
|
||||
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
// Configure the clocks
|
||||
let clocks = hal::clocks::init_clocks_and_plls(
|
||||
XTAL_FREQ_HZ,
|
||||
pac.XOSC,
|
||||
pac.CLOCKS,
|
||||
pac.PLL_SYS,
|
||||
pac.PLL_USB,
|
||||
&mut pac.RESETS,
|
||||
&mut watchdog,
|
||||
)
|
||||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// The single-cycle I/O block controls our GPIO pins
|
||||
let sio = hal::Sio::new(pac.SIO);
|
||||
|
||||
// Set the pins to their default state
|
||||
let pins = hal::gpio::Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
|
||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
||||
|
||||
// Use GPIO 28 as an InOutPin
|
||||
let mut pin = InOutPin::new(pins.gpio28.into());
|
||||
pin.set_high().ok();
|
||||
|
||||
// Perform a sensor reading
|
||||
let _measurement = dht11::Reading::read(&mut delay, &mut pin);
|
||||
|
||||
// In this case, we just ignore the result. A real application
|
||||
// would do something with the measurement.
|
||||
|
||||
#[allow(clippy::empty_loop)]
|
||||
loop {
|
||||
// Empty loop
|
||||
}
|
||||
}
|
||||
|
||||
// End of file
|
Loading…
Reference in a new issue