Polish the watchdog example.

This commit is contained in:
Jonathan Pallant (42 Technology) 2021-09-27 18:57:19 +01:00
parent b005128a73
commit c04f439020

View file

@ -1,37 +1,64 @@
//! How to use the watchdog peripheral to reset the system in case something takes too long
//! # Watchdog Example
//!
//! This application demonstrates how to use the RP2040 Watchdog.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
use cortex_m::prelude::{_embedded_hal_watchdog_Watchdog, _embedded_hal_watchdog_WatchdogEnable};
// The macro for our start-up function
use cortex_m_rt::entry;
use embedded_hal::digital::v2::OutputPin;
use embedded_time::duration::units::*;
use embedded_time::fixed_point::FixedPoint;
use hal::clocks::{init_clocks_and_plls, Clock};
use hal::gpio::Pins;
use hal::pac;
use hal::sio::Sio;
use hal::watchdog::Watchdog;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
// Traits we need
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::watchdog::{Watchdog, WatchdogEnable};
use embedded_time::fixed_point::FixedPoint;
use embedded_time::duration::Extensions;
use rp2040_hal::clocks::Clock;
/// The linker will place this boot block at the start of our program image. We
// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
// External high-speed crystal on the pico board is 12Mhz
// Adjust for your board if this isn't the same
const EXTERNAL_XTAL_FREQ_HZ: u32 = 12_000_000;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
/// an infinite loop. If there is an LED connected to that pin, it will blink.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let cp = pac::CorePeripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
let sio = Sio::new(pac.SIO);
let core = pac::CorePeripherals::take().unwrap();
let clocks = init_clocks_and_plls(
EXTERNAL_XTAL_FREQ_HZ,
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
@ -42,16 +69,19 @@ fn main() -> ! {
.ok()
.unwrap();
let pins = Pins::new(
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::sio::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// We need to accurately delay to give feedback that the watchdog is working correctly
let mut delay = cortex_m::delay::Delay::new(cp.SYST, clocks.system_clock.freq().integer());
// Configure an LED so we can show the current state of the watchdog
let mut led_pin = pins.gpio25.into_push_pull_output();
@ -60,7 +90,7 @@ fn main() -> ! {
delay.delay_ms(2000);
// Set to watchdog to reset if it's not reloaded within 1.05 seconds, and start it
watchdog.start(1_050_000.microseconds());
watchdog.start(1_050_000u32.microseconds());
// Blink once a second for 5 seconds, refreshing the watchdog timer once a second to avoid a reset
for _ in 1..=5 {