Added reader/writer split to UartPeripheral

This commit is contained in:
Victor Koenders 2021-11-27 13:40:57 +01:00
parent 84b8fb05b0
commit c41c273131
No known key found for this signature in database
GPG key ID: 2E441540865B8A1C
5 changed files with 388 additions and 164 deletions

View file

@ -35,11 +35,15 @@
mod peripheral;
mod pins;
mod reader;
mod utils;
mod writer;
pub use self::peripheral::UartPeripheral;
pub use self::pins::*;
pub use self::reader::{ReadError, ReadErrorType, Reader};
pub use self::utils::*;
pub use self::writer::Writer;
/// Common configurations for UART.
pub mod common_configs;

View file

@ -39,6 +39,7 @@ use embedded_time::fixed_point::FixedPoint;
use embedded_time::rate::Baud;
use embedded_time::rate::Hertz;
use nb::Error::{Other, WouldBlock};
use rp2040_pac::{UART0, UART1};
/// An UART Peripheral based on an underlying UART device.
pub struct UartPeripheral<S: State, D: UartDevice, P: ValidUartPinout<D>> {
@ -139,47 +140,13 @@ impl<D: UartDevice, P: ValidUartPinout<D>> UartPeripheral<Enabled, D, P> {
self.transition(Disabled)
}
pub(crate) fn transmit_flushed(&self) -> nb::Result<(), Infallible> {
if self.device.uartfr.read().txfe().bit_is_set() {
Ok(())
} else {
Err(WouldBlock)
}
}
fn uart_is_writable(&self) -> bool {
self.device.uartfr.read().txff().bit_is_clear()
}
fn uart_is_readable(&self) -> bool {
self.device.uartfr.read().rxfe().bit_is_clear()
}
/// Writes bytes to the UART.
/// This function writes as long as it can. As soon that the FIFO is full, if :
/// - 0 bytes were written, a WouldBlock Error is returned
/// - some bytes were written, it is deemed to be a success
/// Upon success, the remaining slice is returned.
pub fn write_raw<'d>(&self, data: &'d [u8]) -> nb::Result<&'d [u8], Infallible> {
let mut bytes_written = 0;
for c in data {
if !self.uart_is_writable() {
if bytes_written == 0 {
return Err(WouldBlock);
} else {
return Ok(&data[bytes_written..]);
}
}
self.device.uartdr.write(|w| unsafe {
w.data().bits(*c);
w
});
bytes_written += 1;
}
Ok(&data[bytes_written..])
super::writer::write_raw(&self.device, data)
}
/// Reads bytes from the UART.
@ -188,83 +155,73 @@ impl<D: UartDevice, P: ValidUartPinout<D>> UartPeripheral<Enabled, D, P> {
/// - some bytes were read, it is deemed to be a success
/// Upon success, it will return how many bytes were read.
pub fn read_raw<'b>(&self, buffer: &'b mut [u8]) -> nb::Result<usize, ReadError<'b>> {
let mut bytes_read = 0;
Ok(loop {
if !self.uart_is_readable() {
if bytes_read == 0 {
return Err(WouldBlock);
} else {
break bytes_read;
}
}
if bytes_read < buffer.len() {
let mut error: Option<ReadErrorType> = None;
let read = self.device.uartdr.read();
if read.oe().bit_is_set() {
error = Some(ReadErrorType::Overrun);
}
if read.be().bit_is_set() {
error = Some(ReadErrorType::Break);
}
if read.pe().bit_is_set() {
error = Some(ReadErrorType::Parity);
}
if read.fe().bit_is_set() {
error = Some(ReadErrorType::Framing);
}
if let Some(err_type) = error {
return Err(Other(ReadError {
err_type,
discared: buffer,
}));
}
buffer[bytes_read] = read.data().bits();
bytes_read += 1;
} else {
break bytes_read;
}
})
super::reader::read_raw(&self.device, buffer)
}
/// Writes bytes to the UART.
/// This function blocks until the full buffer has been sent.
pub fn write_full_blocking(&self, data: &[u8]) {
let mut temp = data;
while !temp.is_empty() {
temp = match self.write_raw(temp) {
Ok(remaining) => remaining,
Err(WouldBlock) => continue,
Err(_) => unreachable!(),
}
}
super::writer::write_full_blocking(&self.device, data);
}
/// Reads bytes from the UART.
/// This function blocks until the full buffer has been received.
pub fn read_full_blocking(&self, buffer: &mut [u8]) -> Result<(), ReadErrorType> {
let mut offset = 0;
super::reader::read_full_blocking(&self.device, buffer)
}
while offset != buffer.len() {
offset += match self.read_raw(&mut buffer[offset..]) {
Ok(bytes_read) => bytes_read,
Err(e) => match e {
Other(inner) => return Err(inner.err_type),
WouldBlock => continue,
},
}
/// Join the reader and writer halves together back into the original Uart peripheral.
///
/// A reader/writer pair can be obtained by calling [`split`].
pub fn join(reader: Reader<D, P>, writer: Writer<D, P>) -> Self {
let _ = writer;
Self {
device: reader.device,
_state: Enabled,
pins: reader.pins,
config: reader.config,
effective_baudrate: reader.effective_baudrate,
}
}
}
Ok(())
impl<P: ValidUartPinout<UART0>> UartPeripheral<Enabled, UART0, P> {
/// Split this peripheral into a separate reader and writer.
pub fn split(self) -> (Reader<UART0, P>, Writer<UART0, P>) {
let reader = Reader {
device: self.device,
pins: self.pins,
config: self.config,
effective_baudrate: self.effective_baudrate,
};
// Safety: reader and writer will never write to the same address
let device_copy = unsafe { &*UART0::ptr() };
let writer = Writer {
device: device_copy,
device_marker: core::marker::PhantomData,
pins: core::marker::PhantomData,
};
(reader, writer)
}
}
impl<P: ValidUartPinout<UART1>> UartPeripheral<Enabled, UART1, P> {
/// Split this peripheral into a separate reader and writer.
pub fn split(self) -> (Reader<UART1, P>, Writer<UART1, P>) {
let reader = Reader {
device: self.device,
pins: self.pins,
config: self.config,
effective_baudrate: self.effective_baudrate,
};
// Safety: reader and writer will never write to the same address
let device_copy = unsafe { &*UART1::ptr() };
let writer = Writer {
device: device_copy,
device_marker: core::marker::PhantomData,
pins: core::marker::PhantomData,
};
(reader, writer)
}
}
@ -390,30 +347,6 @@ impl<D: UartDevice, P: ValidUartPinout<D>> eh1::Read<u8> for UartPeripheral<Enab
}
}
}
/// Same as core::convert::Infallible, but implementing spi::Error
///
/// For eh 1.0.0-alpha.6, Infallible doesn't implement spi::Error,
/// so use a locally defined type instead.
/// This should be removed with the next release of e-h.
/// (https://github.com/rust-embedded/embedded-hal/pull/328)
#[cfg(feature = "eh1_0_alpha")]
pub enum SerialInfallible {}
#[cfg(feature = "eh1_0_alpha")]
impl core::fmt::Debug for SerialInfallible {
fn fmt(&self, _f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match *self {}
}
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::serial::Error for SerialInfallible {
fn kind(&self) -> eh1_0_alpha::serial::ErrorKind {
match *self {}
}
}
impl<D: UartDevice, P: ValidUartPinout<D>> Write<u8> for UartPeripheral<Enabled, D, P> {
type Error = Infallible;
@ -426,7 +359,7 @@ impl<D: UartDevice, P: ValidUartPinout<D>> Write<u8> for UartPeripheral<Enabled,
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.transmit_flushed()
super::writer::transmit_flushed(&self.device)
}
}
@ -443,7 +376,7 @@ impl<D: UartDevice, P: ValidUartPinout<D>> eh1::Write<u8> for UartPeripheral<Ena
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.transmit_flushed().map_err(|e| match e {
super::writer::transmit_flushed(&self.device).map_err(|e| match e {
WouldBlock => WouldBlock,
Other(v) => match v {},
})

View file

@ -0,0 +1,176 @@
use super::{UartConfig, UartDevice, ValidUartPinout};
use embedded_hal::serial::Read;
use embedded_time::rate::Baud;
use nb::Error::*;
#[cfg(feature = "eh1_0_alpha")]
use eh1_0_alpha::serial::nb as eh1;
/// When there's a read error.
pub struct ReadError<'err> {
/// The type of error
pub err_type: ReadErrorType,
/// Reference to the data that was read but eventually discared because of the error.
pub discared: &'err [u8],
}
/// Possible types of read errors. See Chapter 4, Section 2 §8 - Table 436: "UARTDR Register"
#[cfg_attr(feature = "eh1_0_alpha", derive(Debug))]
pub enum ReadErrorType {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::serial::Error for ReadErrorType {
fn kind(&self) -> eh1_0_alpha::serial::ErrorKind {
match self {
ReadErrorType::Overrun => eh1_0_alpha::serial::ErrorKind::Overrun,
ReadErrorType::Break => eh1_0_alpha::serial::ErrorKind::Other,
ReadErrorType::Parity => eh1_0_alpha::serial::ErrorKind::Parity,
ReadErrorType::Framing => eh1_0_alpha::serial::ErrorKind::FrameFormat,
}
}
}
pub(crate) fn is_readable<D: UartDevice>(device: &D) -> bool {
device.uartfr.read().rxfe().bit_is_clear()
}
pub(crate) fn read_raw<'b, D: UartDevice>(
device: &D,
buffer: &'b mut [u8],
) -> nb::Result<usize, ReadError<'b>> {
let mut bytes_read = 0;
Ok(loop {
if !is_readable(device) {
if bytes_read == 0 {
return Err(WouldBlock);
} else {
break bytes_read;
}
}
if bytes_read < buffer.len() {
let mut error: Option<ReadErrorType> = None;
let read = device.uartdr.read();
if read.oe().bit_is_set() {
error = Some(ReadErrorType::Overrun);
}
if read.be().bit_is_set() {
error = Some(ReadErrorType::Break);
}
if read.pe().bit_is_set() {
error = Some(ReadErrorType::Parity);
}
if read.fe().bit_is_set() {
error = Some(ReadErrorType::Framing);
}
if let Some(err_type) = error {
return Err(Other(ReadError {
err_type,
discared: buffer,
}));
}
buffer[bytes_read] = read.data().bits();
bytes_read += 1;
} else {
break bytes_read;
}
})
}
pub(crate) fn read_full_blocking<D: UartDevice>(
device: &D,
buffer: &mut [u8],
) -> Result<(), ReadErrorType> {
let mut offset = 0;
while offset != buffer.len() {
offset += match read_raw(device, &mut buffer[offset..]) {
Ok(bytes_read) => bytes_read,
Err(e) => match e {
Other(inner) => return Err(inner.err_type),
WouldBlock => continue,
},
}
}
Ok(())
}
/// Half of an [`UartPeripheral`] that is only capable of reading. Obtained by calling [`UartPeripheral::split()`]
pub struct Reader<D: UartDevice, P: ValidUartPinout<D>> {
pub(super) device: D,
pub(super) pins: P,
pub(super) config: UartConfig,
pub(super) effective_baudrate: Baud,
}
impl<D: UartDevice, P: ValidUartPinout<D>> Reader<D, P> {
/// Reads bytes from the UART.
/// This function reads as long as it can. As soon that the FIFO is empty, if :
/// - 0 bytes were read, a WouldBlock Error is returned
/// - some bytes were read, it is deemed to be a success
/// Upon success, it will return how many bytes were read.
pub fn read_raw<'b>(&self, buffer: &'b mut [u8]) -> nb::Result<usize, ReadError<'b>> {
read_raw(&self.device, buffer)
}
/// Reads bytes from the UART.
/// This function blocks until the full buffer has been received.
pub fn read_full_blocking(&self, buffer: &mut [u8]) -> Result<(), ReadErrorType> {
read_full_blocking(&self.device, buffer)
}
}
impl<D: UartDevice, P: ValidUartPinout<D>> Read<u8> for Reader<D, P> {
type Error = ReadErrorType;
fn read(&mut self) -> nb::Result<u8, Self::Error> {
let byte: &mut [u8] = &mut [0; 1];
match self.read_raw(byte) {
Ok(_) => Ok(byte[0]),
Err(e) => match e {
Other(inner) => Err(Other(inner.err_type)),
WouldBlock => Err(WouldBlock),
},
}
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<D: UartDevice, P: ValidUartPinout<D>> eh1::Read<u8> for Reader<D, P> {
type Error = ReadErrorType;
fn read(&mut self) -> nb::Result<u8, Self::Error> {
let byte: &mut [u8] = &mut [0; 1];
match self.read_raw(byte) {
Ok(_) => Ok(byte[0]),
Err(e) => match e {
Other(inner) => Err(Other(inner.err_type)),
WouldBlock => Err(WouldBlock),
},
}
}
}

View file

@ -9,49 +9,11 @@ pub enum Error {
/// Bad argument : when things overflow, ...
BadArgument,
}
/// When there's a read error.
pub struct ReadError<'err> {
/// The type of error
pub err_type: ReadErrorType,
/// Reference to the data that was read but eventually discared because of the error.
pub discared: &'err [u8],
}
/// Possible types of read errors. See Chapter 4, Section 2 §8 - Table 436: "UARTDR Register"
#[cfg_attr(feature = "eh1_0_alpha", derive(Debug))]
pub enum ReadErrorType {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::serial::Error for ReadErrorType {
fn kind(&self) -> eh1_0_alpha::serial::ErrorKind {
match self {
ReadErrorType::Overrun => eh1_0_alpha::serial::ErrorKind::Overrun,
ReadErrorType::Break => eh1_0_alpha::serial::ErrorKind::Other,
ReadErrorType::Parity => eh1_0_alpha::serial::ErrorKind::Parity,
ReadErrorType::Framing => eh1_0_alpha::serial::ErrorKind::FrameFormat,
}
}
}
/// State of the UART Peripheral.
pub trait State {}
/// Trait to handle both underlying devices (UART0 & UART1)
pub trait UartDevice: Deref<Target = RegisterBlock> + SubsystemReset {}
pub trait UartDevice: Deref<Target = RegisterBlock> + SubsystemReset + 'static {}
impl UartDevice for UART0 {}
impl UartDevice for UART1 {}
@ -111,3 +73,26 @@ pub struct UartConfig {
/// The parity that this uart should have
pub parity: Option<Parity>,
}
/// Same as core::convert::Infallible, but implementing spi::Error
///
/// For eh 1.0.0-alpha.6, Infallible doesn't implement spi::Error,
/// so use a locally defined type instead.
/// This should be removed with the next release of e-h.
/// (https://github.com/rust-embedded/embedded-hal/pull/328)
#[cfg(feature = "eh1_0_alpha")]
pub enum SerialInfallible {}
#[cfg(feature = "eh1_0_alpha")]
impl core::fmt::Debug for SerialInfallible {
fn fmt(&self, _f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match *self {}
}
}
#[cfg(feature = "eh1_0_alpha")]
impl eh1_0_alpha::serial::Error for SerialInfallible {
fn kind(&self) -> eh1_0_alpha::serial::ErrorKind {
match *self {}
}
}

View file

@ -0,0 +1,126 @@
use super::{UartDevice, ValidUartPinout};
use core::fmt;
use core::{convert::Infallible, marker::PhantomData};
use embedded_hal::serial::Write;
use nb::Error::*;
use rp2040_pac::uart0::RegisterBlock;
#[cfg(feature = "eh1_0_alpha")]
use eh1_0_alpha::serial::nb as eh1;
pub(crate) fn transmit_flushed(rb: &RegisterBlock) -> nb::Result<(), Infallible> {
if rb.uartfr.read().txfe().bit_is_set() {
Ok(())
} else {
Err(WouldBlock)
}
}
fn uart_is_writable(rb: &RegisterBlock) -> bool {
rb.uartfr.read().txff().bit_is_clear()
}
pub(crate) fn write_raw<'d>(
rb: &RegisterBlock,
data: &'d [u8],
) -> nb::Result<&'d [u8], Infallible> {
let mut bytes_written = 0;
for c in data {
if !uart_is_writable(rb) {
if bytes_written == 0 {
return Err(WouldBlock);
} else {
return Ok(&data[bytes_written..]);
}
}
rb.uartdr.write(|w| unsafe {
w.data().bits(*c);
w
});
bytes_written += 1;
}
Ok(&data[bytes_written..])
}
pub(crate) fn write_full_blocking(rb: &RegisterBlock, data: &[u8]) {
let mut temp = data;
while !temp.is_empty() {
temp = match write_raw(rb, temp) {
Ok(remaining) => remaining,
Err(WouldBlock) => continue,
Err(_) => unreachable!(),
}
}
}
/// Half of an [`UartPeripheral`] that is only capable of writing. Obtained by calling [`UartPeripheral::split()`]
pub struct Writer<D: UartDevice, P: ValidUartPinout<D>> {
pub(super) device: &'static RegisterBlock,
pub(super) device_marker: PhantomData<D>,
pub(super) pins: PhantomData<P>,
}
impl<D: UartDevice, P: ValidUartPinout<D>> Writer<D, P> {
/// Writes bytes to the UART.
/// This function writes as long as it can. As soon that the FIFO is full, if :
/// - 0 bytes were written, a WouldBlock Error is returned
/// - some bytes were written, it is deemed to be a success
/// Upon success, the remaining slice is returned.
pub fn write_raw<'d>(&self, data: &'d [u8]) -> nb::Result<&'d [u8], Infallible> {
write_raw(self.device, data)
}
/// Writes bytes to the UART.
/// This function blocks until the full buffer has been sent.
pub fn write_full_blocking(&self, data: &[u8]) {
super::writer::write_full_blocking(self.device, data);
}
}
impl<D: UartDevice, P: ValidUartPinout<D>> Write<u8> for Writer<D, P> {
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
if self.write_raw(&[word]).is_err() {
Err(WouldBlock)
} else {
Ok(())
}
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
super::writer::transmit_flushed(self.device)
}
}
#[cfg(feature = "eh1_0_alpha")]
impl<D: UartDevice, P: ValidUartPinout<D>> eh1::Write<u8> for Writer<D, P> {
type Error = super::utils::SerialInfallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
if self.write_raw(&[word]).is_err() {
Err(WouldBlock)
} else {
Ok(())
}
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
transmit_flushed(&self.device).map_err(|e| match e {
WouldBlock => WouldBlock,
Other(v) => match v {},
})
}
}
impl<D: UartDevice, P: ValidUartPinout<D>> fmt::Write for Writer<D, P> {
fn write_str(&mut self, s: &str) -> fmt::Result {
s.bytes()
.try_for_each(|c| nb::block!(self.write(c)))
.map_err(|_| fmt::Error)
}
}