Added two UART IRQ examples.

They are in the pico BSP as they need the 'rt' feature. Also includes
changes to the UART driver for enabling/disabling interrupts.
This commit is contained in:
Jonathan Pallant (Ferrous Systems) 2021-12-10 15:22:42 +00:00 committed by Jonathan Pallant
parent cc53c1777f
commit d3bd232885
6 changed files with 672 additions and 38 deletions

View file

@ -27,6 +27,7 @@ embedded-hal ="0.2.5"
cortex-m-rtic = "0.6.0-rc.4"
nb = "1.0"
i2c-pio = { git = "https://github.com/ithinuel/i2c-pio-rs", rev = "df06e4ac94a5b2c985d6a9426dc4cc9be0d535c0" }
heapless = "0.7.9"
[features]
default = ["boot2", "rt"]

View file

@ -0,0 +1,298 @@
//! # UART IRQ TX BUffer Example
//!
//! This application demonstrates how to use the UART Driver to talk to a
//! serial connection. In this example, the IRQ owns the UART and you cannot
//! do any UART access from the main thread. You can, however, write to a
//! static queue, and have the queue contents transferred to the UART under
//! interrupt.
//!
//! It may need to be adapted to your particular board layout and/or pin
//! assignment. The pinouts assume you have a Raspberry Pi Pico or compatible:
//!
//! * GPIO 0 - UART TX (out of the RP2040)
//! * GPIO 1 - UART RX (in to the RP2040)
//! * GPIO 25 - An LED we can blink (active high)
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// These are the traits we need from Embedded HAL to treat our hardware
// objects as generic embedded devices.
use embedded_hal::{digital::v2::OutputPin, serial::Write as UartWrite};
// We need this for the 'Delay' object to work.
use embedded_time::fixed_point::FixedPoint;
// The writeln! trait.
use core::fmt::Write;
// We also need this for the 'Delay' object to work.
use rp2040_hal::Clock;
// The macro for our start-up function
use cortex_m_rt::entry;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
// Our interrupt macro
use pac::interrupt;
// Some short-cuts to useful types
use core::cell::RefCell;
use cortex_m::interrupt::Mutex;
use heapless::spsc::Queue;
/// Import the GPIO pins we use
use hal::gpio::pin::bank0::{Gpio0, Gpio1};
/// Alias the type for our UART pins to make things clearer.
type UartPins = (
hal::gpio::Pin<Gpio0, hal::gpio::Function<hal::gpio::Uart>>,
hal::gpio::Pin<Gpio1, hal::gpio::Function<hal::gpio::Uart>>,
);
/// Alias the type for our UART to make things clearer.
type Uart = hal::uart::UartPeripheral<hal::uart::Enabled, pac::UART0, UartPins>;
/// This describes the queue we use for outbound UART data
struct UartQueue {
mutex_cell_queue: Mutex<RefCell<Queue<u8, 64>>>,
interrupt: pac::Interrupt,
}
/// The linker will place this boot block at the start of our program image. We
// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// This how we transfer the UART into the Interrupt Handler
static GLOBAL_UART: Mutex<RefCell<Option<Uart>>> = Mutex::new(RefCell::new(None));
/// This is our outbound UART queue. We write to it from the main thread, and
/// read from it in the UART IRQ.
static UART_TX_QUEUE: UartQueue = UartQueue {
mutex_cell_queue: Mutex::new(RefCell::new(Queue::new())),
interrupt: hal::pac::Interrupt::UART0_IRQ,
};
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then writes to the UART in
/// an inifinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Lets us wait for fixed periods of time
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
let uart_pins = (
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
// UART RX (characters reveived by RP2040) on pin 2 (GPIO1)
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
);
// Make a UART on the given pins
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
.enable(
hal::uart::common_configs::_9600_8_N_1,
clocks.peripheral_clock.into(),
)
.unwrap();
// Tell the UART to raise its interrupt line on the NVIC when the TX FIFO
// has space in it.
uart.enable_tx_interrupt();
// Now we give away the entire UART peripheral, via the variable
// `GLOBAL_UART`. We can no longer access the UART from this main thread.
cortex_m::interrupt::free(|cs| {
GLOBAL_UART.borrow(cs).replace(Some(uart));
});
// But we can blink an LED.
let mut led_pin = pins.gpio25.into_push_pull_output();
loop {
// Light the LED whilst the main thread is in the transmit routine. It
// shouldn't be on very long, but it will be on whilst we get enough
// data /out/ of the queue and over the UART for this remainder of
// this string to fit.
led_pin.set_high().unwrap();
// Note we can only write to &UART_TX_QUEUE, because it's not mutable and
// `core::fmt::Write` takes mutable references.
writeln!(
&UART_TX_QUEUE,
"Hello, this was sent under interrupt! It's quite a \
long message, designed not to fit in either the \
hardware FIFO or the software queue."
)
.unwrap();
led_pin.set_low().unwrap();
// Wait for a second - the UART TX IRQ will transmit the remainder of our queue contents in the background.
delay.delay_ms(1000);
}
}
impl UartQueue {
/// Try and get some data out of the UART Queue. Returns None if queue empty.
fn read_byte(&self) -> Option<u8> {
cortex_m::interrupt::free(|cs| {
let cell_queue = self.mutex_cell_queue.borrow(cs);
let mut queue = cell_queue.borrow_mut();
queue.dequeue()
})
}
/// Peek at the next byte in the queue without removing it.
fn peek_byte(&self) -> Option<u8> {
cortex_m::interrupt::free(|cs| {
let cell_queue = self.mutex_cell_queue.borrow(cs);
let queue = cell_queue.borrow_mut();
queue.peek().cloned()
})
}
/// Write some data to the queue, spinning until it all fits.
fn write_bytes_blocking(&self, data: &[u8]) {
// Go through all the bytes we need to write.
for byte in data.iter() {
// Keep trying until there is space in the queue. But release the
// mutex between each attempt, otherwise the IRQ will never run
// and we will never have space!
let mut written = false;
while !written {
// Grab the mutex, by turning interrupts off. NOTE: This
// doesn't work if you are using Core 1 as we only turn
// interrupts off on one core.
cortex_m::interrupt::free(|cs| {
// Grab the mutex contents.
let cell_queue = self.mutex_cell_queue.borrow(cs);
// Grab mutable access to the queue. This can't fail
// because there are no interrupts running.
let mut queue = cell_queue.borrow_mut();
// Try and put the byte in the queue.
if queue.enqueue(*byte).is_ok() {
// It worked! We must have had space.
if !pac::NVIC::is_enabled(self.interrupt) {
unsafe {
// Now enable the UART interrupt in the *Nested
// Vectored Interrupt Controller*, which is part
// of the Cortex-M0+ core. If the FIFO has space,
// the interrupt will run as soon as we're out of
// the closure.
pac::NVIC::unmask(self.interrupt);
// We also have to kick the IRQ in case the FIFO
// was already below the threshold level.
pac::NVIC::pend(self.interrupt);
}
}
written = true;
}
});
}
}
}
}
impl core::fmt::Write for &UartQueue {
/// This function allows us to `writeln!` on our global static UART queue.
/// Note we have an impl for &UartQueue, because our global static queue
/// is not mutable and `core::fmt::Write` takes mutable references.
fn write_str(&mut self, data: &str) -> core::fmt::Result {
self.write_bytes_blocking(data.as_bytes());
Ok(())
}
}
#[interrupt]
fn UART0_IRQ() {
// This variable is special. It gets mangled by the `#[interrupt]` macro
// into something that we can access without the `unsafe` keyword. It can
// do this because this function cannot be called re-entrantly. We know
// this because the function's 'real' name is unknown, and hence it cannot
// be called from the main thread. We also know that the NVIC will not
// re-entrantly call an interrupt.
static mut UART: Option<hal::uart::UartPeripheral<hal::uart::Enabled, pac::UART0, UartPins>> =
None;
// This is one-time lazy initialisation. We steal the variable given to us
// via `GLOBAL_UART`.
if UART.is_none() {
cortex_m::interrupt::free(|cs| {
*UART = GLOBAL_UART.borrow(cs).take();
});
}
// Check if we have a UART to work with
if let Some(uart) = UART {
// Check if we have data to transmit
while let Some(byte) = UART_TX_QUEUE.peek_byte() {
if uart.write(byte).is_ok() {
// The UART took it, so pop it off the queue.
let _ = UART_TX_QUEUE.read_byte();
} else {
break;
}
}
if UART_TX_QUEUE.peek_byte().is_none() {
pac::NVIC::mask(hal::pac::Interrupt::UART0_IRQ);
}
}
// Set an event to ensure the main thread always wakes up, even if it's in
// the process of going to sleep.
cortex_m::asm::sev();
}
// End of file

View file

@ -0,0 +1,206 @@
//! # UART IRQ Echo Example
//!
//! This application demonstrates how to use the UART Driver to talk to a serial
//! connection. In this example, the IRQ owns the UART and you cannot do any UART
//! access from the main thread.
//!
//! It may need to be adapted to your particular board layout and/or pin
//! assignment. The pinouts assume you have a Raspberry Pi Pico or compatible:
//!
//! * GPIO 0 - UART TX (out of the RP2040)
//! * GPIO 1 - UART RX (in to the RP2040)
//! * GPIO 25 - An LED we can blink (active high)
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// These are the traits we need from Embedded HAL to treat our hardware
// objects as generic embedded devices.
use embedded_hal::{
digital::v2::OutputPin,
serial::{Read, Write},
};
// We need this for the 'Delay' object to work.
use embedded_time::fixed_point::FixedPoint;
// We also need this for the 'Delay' object to work.
use rp2040_hal::Clock;
// The macro for our start-up function
use cortex_m_rt::entry;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
// Our interrupt macro
use hal::pac::interrupt;
// Some short-cuts to useful types
use core::cell::RefCell;
use cortex_m::interrupt::Mutex;
/// Import the GPIO pins we use
use hal::gpio::pin::bank0::{Gpio0, Gpio1};
/// Alias the type for our UART pins to make things clearer.
type UartPins = (
hal::gpio::Pin<Gpio0, hal::gpio::Function<hal::gpio::Uart>>,
hal::gpio::Pin<Gpio1, hal::gpio::Function<hal::gpio::Uart>>,
);
/// Alias the type for our UART to make things clearer.
type Uart = hal::uart::UartPeripheral<hal::uart::Enabled, pac::UART0, UartPins>;
/// The linker will place this boot block at the start of our program image. We
// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// This how we transfer the UART into the Interrupt Handler
static GLOBAL_UART: Mutex<RefCell<Option<Uart>>> = Mutex::new(RefCell::new(None));
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then writes to the UART in
/// an inifinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Lets us wait for fixed periods of time
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
let uart_pins = (
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
// UART RX (characters reveived by RP2040) on pin 2 (GPIO1)
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
);
// Make a UART on the given pins
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
.enable(
hal::uart::common_configs::_9600_8_N_1,
clocks.peripheral_clock.into(),
)
.unwrap();
unsafe {
// Enable the UART interrupt in the *Nested Vectored Interrupt
// Controller*, which is part of the Cortex-M0+ core.
pac::NVIC::unmask(hal::pac::Interrupt::UART0_IRQ);
}
// Tell the UART to raise its interrupt line on the NVIC when the RX FIFO
// has data in it.
uart.enable_rx_interrupt();
// Write something to the UART on start-up so we can check the output pin
// is wired correctly.
uart.write_full_blocking(b"uart_interrupt example started...\n");
// Now we give away the entire UART peripheral, via the variable
// `GLOBAL_UART`. We can no longer access the UART from this main thread.
cortex_m::interrupt::free(|cs| {
GLOBAL_UART.borrow(cs).replace(Some(uart));
});
// But we can blink an LED.
let mut led_pin = pins.gpio25.into_push_pull_output();
loop {
// The normal *Wait For Interrupts* (WFI) has a race-hazard - the
// interrupt could occur between the CPU checking for interrupts and
// the CPU going to sleep. We wait for events (and interrupts), and
// then we set an event in every interrupt handler. This ensures we
// always wake up correctly.
cortex_m::asm::wfe();
// Light the LED to indicate we saw an interrupt.
led_pin.set_high().unwrap();
delay.delay_ms(100);
led_pin.set_low().unwrap();
}
}
#[interrupt]
fn UART0_IRQ() {
// This variable is special. It gets mangled by the `#[interrupt]` macro
// into something that we can access without the `unsafe` keyword. It can
// do this because this function cannot be called re-entrantly. We know
// this because the function's 'real' name is unknown, and hence it cannot
// be called from the main thread. We also know that the NVIC will not
// re-entrantly call an interrupt.
static mut UART: Option<hal::uart::UartPeripheral<hal::uart::Enabled, pac::UART0, UartPins>> =
None;
// This is one-time lazy initialisation. We steal the variable given to us
// via `GLOBAL_UART`.
if UART.is_none() {
cortex_m::interrupt::free(|cs| {
*UART = GLOBAL_UART.borrow(cs).take();
});
}
// Check if we have a UART to work with
if let Some(uart) = UART {
// Echo the input back to the output until the FIFO is empty. Reading
// from the UART should also clear the UART interrupt flag.
while let Ok(byte) = uart.read() {
let _ = uart.write(byte);
}
}
// Set an event to ensure the main thread always wakes up, even if it's in
// the process of going to sleep.
cortex_m::asm::sev();
}
// End of file

View file

@ -1,36 +1,7 @@
//! Universal Asynchronous Receiver Transmitter (UART)
//! Universal Asynchronous Receiver Transmitter - Bi-directional Peripheral Code
//!
//! See [Chapter 4 Section 2](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details
//!
//! ## Usage
//!
//! See [examples/uart.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/uart.rs) for a more complete example
//! ```no_run
//! use rp2040_hal::{clocks::init_clocks_and_plls, gpio::{Pins, FunctionUart}, pac, Sio, uart::{self, UartPeripheral}, watchdog::Watchdog};
//!
//! const XOSC_CRYSTAL_FREQ: u32 = 12_000_000; // Typically found in BSP crates
//!
//! let mut peripherals = pac::Peripherals::take().unwrap();
//! let sio = Sio::new(peripherals.SIO);
//! let pins = Pins::new(peripherals.IO_BANK0, peripherals.PADS_BANK0, sio.gpio_bank0, &mut peripherals.RESETS);
//! let mut watchdog = Watchdog::new(peripherals.WATCHDOG);
//! let mut clocks = init_clocks_and_plls(XOSC_CRYSTAL_FREQ, peripherals.XOSC, peripherals.CLOCKS, peripherals.PLL_SYS, peripherals.PLL_USB, &mut peripherals.RESETS, &mut watchdog).ok().unwrap();
//!
//! // Set up UART on GP0 and GP1 (Pico pins 1 and 2)
//! let pins = (
//! pins.gpio0.into_mode::<FunctionUart>(),
//! pins.gpio1.into_mode::<FunctionUart>(),
//! );
//! // Need to perform clock init before using UART or it will freeze.
//! let uart = UartPeripheral::new(peripherals.UART0, pins, &mut peripherals.RESETS)
//! .enable(
//! uart::common_configs::_9600_8_N_1,
//! clocks.peripheral_clock.into(),
//! )
//! .unwrap();
//!
//! uart.write_full_blocking(b"Hello World!\r\n");
//! ```
//! This module brings together `uart::reader` and `uart::writer` to give a
//! UartPeripheral object that can both read and write.
use super::*;
use crate::pac::uart0::uartlcr_h::W as UART_LCR_H_Writer;
@ -97,6 +68,7 @@ impl<D: UartDevice, P: ValidUartPinout<D>> UartPeripheral<Disabled, D, P> {
let effective_baudrate = configure_baudrate(&mut device, &config.baudrate, &frequency)?;
device.uartlcr_h.write(|w| {
// FIFOs are enabled
w.fen().set_bit();
set_format(w, &config.data_bits, &config.stop_bits, &config.parity);
w
@ -145,6 +117,40 @@ impl<D: UartDevice, P: ValidUartPinout<D>> UartPeripheral<Enabled, D, P> {
self.transition(Disabled)
}
/// Enables the Receive Interrupt.
///
/// The relevant UARTx IRQ will fire when there is data in the receive register.
pub fn enable_rx_interrupt(&mut self) {
super::reader::enable_rx_interrupt(&self.device)
}
/// Enables the Transmit Interrupt.
///
/// The relevant UARTx IRQ will fire when there is space in the transmit FIFO.
pub fn enable_tx_interrupt(&mut self) {
super::writer::enable_tx_interrupt(&self.device)
}
/// Disables the Receive Interrupt.
pub fn disable_rx_interrupt(&mut self) {
super::reader::disable_rx_interrupt(&self.device)
}
/// Disables the Transmit Interrupt.
pub fn disable_tx_interrupt(&mut self) {
super::writer::disable_tx_interrupt(&self.device)
}
/// Is there space in the UART TX FIFO for new data to be written?
pub fn uart_is_writable(&self) -> bool {
super::writer::uart_is_writable(&self.device)
}
/// Is there data in the UART RX FIFO ready to be read?
pub fn uart_is_readable(&self) -> bool {
super::reader::is_readable(&self.device)
}
/// Writes bytes to the UART.
/// This function writes as long as it can. As soon that the FIFO is full, if :
/// - 0 bytes were written, a WouldBlock Error is returned

View file

@ -1,4 +1,10 @@
//! Universal Asynchronous Receiver Transmitter - Receiver Code
//!
//! This module is for receiving data with a UART.
use super::{UartConfig, UartDevice, ValidUartPinout};
use rp2040_pac::uart0::RegisterBlock;
use embedded_hal::serial::Read;
use embedded_time::rate::Baud;
use nb::Error::*;
@ -47,6 +53,43 @@ pub(crate) fn is_readable<D: UartDevice>(device: &D) -> bool {
device.uartfr.read().rxfe().bit_is_clear()
}
/// Enables the Receive Interrupt.
///
/// The relevant UARTx IRQ will fire when there is data in the receive register.
pub(crate) fn enable_rx_interrupt(rb: &RegisterBlock) {
// Access the UART FIFO Level Select. We set the RX FIFO trip level
// to be half-full.
// 2 means '>= 1/2 full'.
rb.uartifls.modify(|_r, w| unsafe { w.rxiflsel().bits(2) });
// Access the UART Interrupt Mask Set/Clear register. Setting a bit
// high enables the interrupt.
// We set the RX interrupt, and the RX Timeout interrupt. This means
// we will get an interrupt when the RX FIFO level is triggered, or
// when the RX FIFO is non-empty, but 32-bit periods have passed with
// no further data. This means we don't have to interrupt on every
// single byte, but can make use of the hardware FIFO.
rb.uartimsc.modify(|_r, w| {
w.rxim().set_bit();
w.rtim().set_bit();
w
});
}
/// Disables the Receive Interrupt.
pub(crate) fn disable_rx_interrupt(rb: &RegisterBlock) {
// Access the UART Interrupt Mask Set/Clear register. Setting a bit
// low disables the interrupt.
rb.uartimsc.modify(|_r, w| {
w.rxim().clear_bit();
w.rtim().clear_bit();
w
});
}
pub(crate) fn read_raw<'b, D: UartDevice>(
device: &D,
buffer: &'b mut [u8],
@ -143,6 +186,18 @@ impl<D: UartDevice, P: ValidUartPinout<D>> Reader<D, P> {
pub fn read_full_blocking(&self, buffer: &mut [u8]) -> Result<(), ReadErrorType> {
read_full_blocking(&self.device, buffer)
}
/// Enables the Receive Interrupt.
///
/// The relevant UARTx IRQ will fire when there is data in the receive register.
pub fn enable_rx_interrupt(&mut self) {
enable_rx_interrupt(&self.device)
}
/// Disables the Receive Interrupt.
pub fn disable_rx_interrupt(&mut self) {
disable_rx_interrupt(&self.device)
}
}
impl<D: UartDevice, P: ValidUartPinout<D>> Read<u8> for Reader<D, P> {

View file

@ -1,3 +1,7 @@
//! Universal Asynchronous Receiver Transmitter - Transmitter Code
//!
//! This module is for transmitting data with a UART.
use super::{UartDevice, ValidUartPinout};
use core::fmt;
use core::{convert::Infallible, marker::PhantomData};
@ -8,6 +12,8 @@ use rp2040_pac::uart0::RegisterBlock;
#[cfg(feature = "eh1_0_alpha")]
use eh1_0_alpha::serial::nb as eh1;
/// Returns `Err(WouldBlock)` if the UART TX FIFO still has data in it or
/// `Ok(())` if the FIFO is empty.
pub(crate) fn transmit_flushed(rb: &RegisterBlock) -> nb::Result<(), Infallible> {
if rb.uartfr.read().txfe().bit_is_set() {
Ok(())
@ -16,10 +22,19 @@ pub(crate) fn transmit_flushed(rb: &RegisterBlock) -> nb::Result<(), Infallible>
}
}
fn uart_is_writable(rb: &RegisterBlock) -> bool {
/// Returns `true` if the TX FIFO has space, or false if it is full
pub(crate) fn uart_is_writable(rb: &RegisterBlock) -> bool {
rb.uartfr.read().txff().bit_is_clear()
}
/// Writes bytes to the UART.
///
/// This function writes as long as it can. As soon that the FIFO is full,
/// if:
/// - 0 bytes were written, a WouldBlock Error is returned
/// - some bytes were written, it is deemed to be a success
///
/// Upon success, the remaining (unwritten) slice is returned.
pub(crate) fn write_raw<'d>(
rb: &RegisterBlock,
data: &'d [u8],
@ -45,6 +60,9 @@ pub(crate) fn write_raw<'d>(
Ok(&data[bytes_written..])
}
/// Writes bytes to the UART.
///
/// This function blocks until the full buffer has been sent.
pub(crate) fn write_full_blocking(rb: &RegisterBlock, data: &[u8]) {
let mut temp = data;
@ -57,6 +75,40 @@ pub(crate) fn write_full_blocking(rb: &RegisterBlock, data: &[u8]) {
}
}
/// Enables the Transmit Interrupt.
///
/// The relevant UARTx IRQ will fire when there is space in the transmit FIFO.
pub(crate) fn enable_tx_interrupt(rb: &RegisterBlock) {
// Access the UART FIFO Level Select. We set the TX FIFO trip level
// to be when it's half-empty..
// 2 means '<= 1/2 full'.
rb.uartifls.modify(|_r, w| unsafe { w.txiflsel().bits(2) });
// Access the UART Interrupt Mask Set/Clear register. Setting a bit
// high enables the interrupt.
// We set the TX interrupt. This means we will get an interrupt when
// the TX FIFO level is triggered. This means we don't have to
// interrupt on every single byte, but can make use of the hardware
// FIFO.
rb.uartimsc.modify(|_r, w| {
w.txim().set_bit();
w
});
}
/// Disables the Transmit Interrupt.
pub(crate) fn disable_tx_interrupt(rb: &RegisterBlock) {
// Access the UART Interrupt Mask Set/Clear register. Setting a bit
// low disables the interrupt.
rb.uartimsc.modify(|_r, w| {
w.txim().clear_bit();
w
});
}
/// Half of an [`UartPeripheral`] that is only capable of writing. Obtained by calling [`UartPeripheral::split()`]
///
/// [`UartPeripheral`]: struct.UartPeripheral.html
@ -69,18 +121,34 @@ pub struct Writer<D: UartDevice, P: ValidUartPinout<D>> {
impl<D: UartDevice, P: ValidUartPinout<D>> Writer<D, P> {
/// Writes bytes to the UART.
/// This function writes as long as it can. As soon that the FIFO is full, if :
///
/// This function writes as long as it can. As soon that the FIFO is full,
/// if:
/// - 0 bytes were written, a WouldBlock Error is returned
/// - some bytes were written, it is deemed to be a success
/// Upon success, the remaining slice is returned.
///
/// Upon success, the remaining (unwritten) slice is returned.
pub fn write_raw<'d>(&self, data: &'d [u8]) -> nb::Result<&'d [u8], Infallible> {
write_raw(self.device, data)
}
/// Writes bytes to the UART.
///
/// This function blocks until the full buffer has been sent.
pub fn write_full_blocking(&self, data: &[u8]) {
super::writer::write_full_blocking(self.device, data);
write_full_blocking(self.device, data);
}
/// Enables the Transmit Interrupt.
///
/// The relevant UARTx IRQ will fire when there is space in the transmit FIFO.
pub fn enable_tx_interrupt(&mut self) {
enable_tx_interrupt(self.device)
}
/// Disables the Transmit Interrupt.
pub fn disable_tx_interrupt(&mut self) {
disable_tx_interrupt(self.device)
}
}
@ -96,7 +164,7 @@ impl<D: UartDevice, P: ValidUartPinout<D>> Write<u8> for Writer<D, P> {
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
super::writer::transmit_flushed(self.device)
transmit_flushed(self.device)
}
}
@ -115,7 +183,7 @@ impl<D: UartDevice, P: ValidUartPinout<D>> eh1::Write<u8> for Writer<D, P> {
fn flush(&mut self) -> nb::Result<(), Self::Error> {
transmit_flushed(&self.device).map_err(|e| match e {
WouldBlock => WouldBlock,
Other(v) => match v {},
Other(_v) => {}
})
}
}