mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-23 01:36:35 +11:00
Merge pull request #311 from Liamolucko/multicore-no-alloc
Remove the `alloc` requirement for `Core::spawn`
This commit is contained in:
commit
d66b47920e
4 changed files with 227 additions and 87 deletions
|
@ -42,7 +42,6 @@ dht-sensor = "0.2.1"
|
|||
|
||||
[features]
|
||||
rt = ["rp2040-pac/rt"]
|
||||
alloc = []
|
||||
rom-func-cache = []
|
||||
disable-intrinsics = []
|
||||
rom-v2-intrinsics = []
|
||||
|
|
|
@ -57,7 +57,7 @@ const CORE1_TASK_COMPLETE: u32 = 0xEE;
|
|||
/// the stack guard to take up the least amount of usable RAM.
|
||||
static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
|
||||
fn core1_task() -> ! {
|
||||
fn core1_task(sys_freq: u32) -> ! {
|
||||
let mut pac = unsafe { pac::Peripherals::steal() };
|
||||
let core = unsafe { pac::CorePeripherals::steal() };
|
||||
|
||||
|
@ -70,10 +70,6 @@ fn core1_task() -> ! {
|
|||
);
|
||||
|
||||
let mut led_pin = pins.gpio25.into_push_pull_output();
|
||||
// The first thing core0 sends us is the system bus frequency.
|
||||
// The systick is based on this frequency, so we need that to
|
||||
// be accurate when sleeping via cortex_m::delay::Delay
|
||||
let sys_freq = sio.fifo.read_blocking();
|
||||
let mut delay = cortex_m::delay::Delay::new(core.SYST, sys_freq);
|
||||
loop {
|
||||
let input = sio.fifo.read();
|
||||
|
@ -114,17 +110,18 @@ fn main() -> ! {
|
|||
.ok()
|
||||
.unwrap();
|
||||
|
||||
let sys_freq = clocks.system_clock.freq().integer();
|
||||
|
||||
// The single-cycle I/O block controls our GPIO pins
|
||||
let mut sio = hal::sio::Sio::new(pac.SIO);
|
||||
|
||||
let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio);
|
||||
let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo);
|
||||
let cores = mc.cores();
|
||||
let core1 = &mut cores[1];
|
||||
let _test = core1.spawn(core1_task, unsafe { &mut CORE1_STACK.mem });
|
||||
let _test = core1.spawn(unsafe { &mut CORE1_STACK.mem }, move || {
|
||||
core1_task(sys_freq)
|
||||
});
|
||||
|
||||
// Let core1 know how fast the system clock is running
|
||||
let sys_freq = clocks.system_clock.freq().integer();
|
||||
sio.fifo.write_blocking(sys_freq);
|
||||
/// How much we adjust the LED period every cycle
|
||||
const LED_PERIOD_INCREMENT: i32 = 2;
|
||||
|
||||
|
|
133
rp2040-hal/examples/multicore_polyblink.rs
Normal file
133
rp2040-hal/examples/multicore_polyblink.rs
Normal file
|
@ -0,0 +1,133 @@
|
|||
//! # Multicore Blinking Example
|
||||
//!
|
||||
//! This application blinks two LEDs on GPIOs 2 and 3 at different rates (3Hz
|
||||
//! and 4Hz respectively.)
|
||||
//!
|
||||
//! See the `Cargo.toml` file for Copyright and licence details.
|
||||
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use cortex_m::delay::Delay;
|
||||
// The macro for our start-up function
|
||||
use cortex_m_rt::entry;
|
||||
|
||||
use embedded_time::fixed_point::FixedPoint;
|
||||
use hal::clocks::Clock;
|
||||
use hal::gpio::Pins;
|
||||
use hal::multicore::{Multicore, Stack};
|
||||
use hal::sio::Sio;
|
||||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||||
// be linked)
|
||||
use panic_halt as _;
|
||||
|
||||
// Alias for our HAL crate
|
||||
use rp2040_hal as hal;
|
||||
|
||||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||||
// register access
|
||||
use hal::pac;
|
||||
|
||||
// Some traits we need
|
||||
use embedded_hal::digital::v2::ToggleableOutputPin;
|
||||
|
||||
/// The linker will place this boot block at the start of our program image. We
|
||||
/// need this to help the ROM bootloader get our code up and running.
|
||||
#[link_section = ".boot2"]
|
||||
#[used]
|
||||
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
||||
|
||||
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
||||
/// if your board has a different frequency
|
||||
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
||||
|
||||
/// The frequency at which core 0 will blink its LED (Hz).
|
||||
const CORE0_FREQ: u32 = 3;
|
||||
/// The frequency at which core 1 will blink its LED (Hz).
|
||||
const CORE1_FREQ: u32 = 4;
|
||||
/// The delay between each toggle of core 0's LED (us).
|
||||
const CORE0_DELAY: u32 = 1_000_000 / CORE0_FREQ;
|
||||
/// The delay between each toggle of core 1's LED (us).
|
||||
const CORE1_DELAY: u32 = 1_000_000 / CORE1_FREQ;
|
||||
|
||||
/// Stack for core 1
|
||||
///
|
||||
/// Core 0 gets its stack via the normal route - any memory not used by static
|
||||
/// values is reserved for stack and initialised by cortex-m-rt.
|
||||
/// To get the same for Core 1, we would need to compile everything seperately
|
||||
/// and modify the linker file for both programs, and that's quite annoying.
|
||||
/// So instead, core1.spawn takes a [usize] which gets used for the stack.
|
||||
/// NOTE: We use the `Stack` struct here to ensure that it has 32-byte
|
||||
/// alignment, which allows the stack guard to take up the least amount of
|
||||
/// usable RAM.
|
||||
static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
|
||||
/// Entry point to our bare-metal application.
|
||||
///
|
||||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||||
/// as soon as all global variables are initialised.
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
// Grab our singleton objects
|
||||
let mut pac = pac::Peripherals::take().unwrap();
|
||||
let core = pac::CorePeripherals::take().unwrap();
|
||||
|
||||
// Set up the watchdog driver - needed by the clock setup code
|
||||
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
|
||||
|
||||
// Configure the clocks
|
||||
let clocks = hal::clocks::init_clocks_and_plls(
|
||||
XTAL_FREQ_HZ,
|
||||
pac.XOSC,
|
||||
pac.CLOCKS,
|
||||
pac.PLL_SYS,
|
||||
pac.PLL_USB,
|
||||
&mut pac.RESETS,
|
||||
&mut watchdog,
|
||||
)
|
||||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// Set up the GPIO pins
|
||||
let mut sio = Sio::new(pac.SIO);
|
||||
let pins = Pins::new(
|
||||
pac.IO_BANK0,
|
||||
pac.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut pac.RESETS,
|
||||
);
|
||||
let mut led1 = pins.gpio2.into_push_pull_output();
|
||||
let mut led2 = pins.gpio3.into_push_pull_output();
|
||||
|
||||
// Set up the delay for the first core.
|
||||
let sys_freq = clocks.system_clock.freq().integer();
|
||||
let mut delay = Delay::new(core.SYST, sys_freq);
|
||||
|
||||
// Start up the second core to blink the second LED
|
||||
let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo);
|
||||
let cores = mc.cores();
|
||||
let core1 = &mut cores[1];
|
||||
core1
|
||||
.spawn(unsafe { &mut CORE1_STACK.mem }, move || {
|
||||
// Get the second core's copy of the `CorePeripherals`, which are per-core.
|
||||
// Unfortunately, `cortex-m` doesn't support this properly right now,
|
||||
// so we have to use `steal`.
|
||||
let core = unsafe { pac::CorePeripherals::steal() };
|
||||
// Set up the delay for the second core.
|
||||
let mut delay = Delay::new(core.SYST, sys_freq);
|
||||
// Blink the second LED.
|
||||
loop {
|
||||
led2.toggle().unwrap();
|
||||
delay.delay_us(CORE1_DELAY)
|
||||
}
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
// Blink the first LED.
|
||||
loop {
|
||||
led1.toggle().unwrap();
|
||||
delay.delay_us(CORE0_DELAY)
|
||||
}
|
||||
}
|
||||
|
||||
// End of file
|
|
@ -3,29 +3,30 @@
|
|||
//! This module handles setup of the 2nd cpu core on the rp2040, which we refer to as core1.
|
||||
//! It provides functionality for setting up the stack, and starting core1.
|
||||
//!
|
||||
//! The options for an entrypoint for core1 are
|
||||
//! - a function that never returns - eg
|
||||
//! `fn core1_task() -> ! { loop{} }; `
|
||||
//! - a lambda (note: This requires a global allocator which requires a nightly compiler. Not recommended for beginners)
|
||||
//! The entrypoint for core1 can be any function that never returns, including closures.
|
||||
//!
|
||||
//! # Usage
|
||||
//!
|
||||
//! ```no_run
|
||||
//! use rp2040_hal::{pac, gpio::Pins, sio::Sio, multicore::{Multicore, Stack}};
|
||||
//!
|
||||
//! static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
//!
|
||||
//! fn core1_task() -> ! {
|
||||
//! loop{}
|
||||
//! loop {}
|
||||
//! }
|
||||
//! // fn main() -> ! {
|
||||
//! use rp2040_hal::{pac, gpio::Pins, sio::Sio, multicore::{Multicore, Stack}};
|
||||
//!
|
||||
//! fn main() -> ! {
|
||||
//! let mut pac = pac::Peripherals::take().unwrap();
|
||||
//! let mut sio = Sio::new(pac.SIO);
|
||||
//! // Other init code above this line
|
||||
//! let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio);
|
||||
//! let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo);
|
||||
//! let cores = mc.cores();
|
||||
//! let core1 = &mut cores[1];
|
||||
//! let _test = core1.spawn(core1_task, unsafe { &mut CORE1_STACK.mem });
|
||||
//! let _test = core1.spawn(unsafe { &mut CORE1_STACK.mem }, core1_task);
|
||||
//! // The rest of your application below this line
|
||||
//! //}
|
||||
//! # loop {}
|
||||
//! }
|
||||
//!
|
||||
//! ```
|
||||
//!
|
||||
|
@ -33,10 +34,12 @@
|
|||
//!
|
||||
//! For a detailed example, see [examples/multicore_fifo_blink.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/multicore_fifo_blink.rs)
|
||||
|
||||
use crate::pac;
|
||||
use core::mem::ManuallyDrop;
|
||||
use core::sync::atomic::compiler_fence;
|
||||
use core::sync::atomic::Ordering;
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
extern crate alloc;
|
||||
use crate::pac;
|
||||
use crate::Sio;
|
||||
|
||||
/// Errors for multicore operations.
|
||||
#[derive(Debug)]
|
||||
|
@ -47,15 +50,6 @@ pub enum Error {
|
|||
Unresponsive,
|
||||
}
|
||||
|
||||
// We pass data to cores via the stack, so we read
|
||||
// the data off the stack and into parameters that
|
||||
// rust can read here. Ideally this would be a
|
||||
// #[naked] function but that is not stable yet.
|
||||
static MULTICORE_TRAMPOLINE: [u16; 2] = [
|
||||
0xbd03, // pop {r0, r1, pc} - call wrapper (pc) with r0 and r1
|
||||
0x46c0, // nop - pad this out to 32 bits long
|
||||
];
|
||||
|
||||
#[inline(always)]
|
||||
fn install_stack_guard(stack_bottom: *mut usize) {
|
||||
let core = unsafe { pac::CorePeripherals::steal() };
|
||||
|
@ -109,7 +103,11 @@ impl<const SIZE: usize> Stack<SIZE> {
|
|||
|
||||
impl<'p> Multicore<'p> {
|
||||
/// Create a new |Multicore| instance.
|
||||
pub fn new(psm: &'p mut pac::PSM, ppb: &'p mut pac::PPB, sio: &'p mut crate::Sio) -> Self {
|
||||
pub fn new(
|
||||
psm: &'p mut pac::PSM,
|
||||
ppb: &'p mut pac::PPB,
|
||||
sio: &'p mut crate::sio::SioFifo,
|
||||
) -> Self {
|
||||
Self {
|
||||
cores: [
|
||||
Core { inner: None },
|
||||
|
@ -128,7 +126,11 @@ impl<'p> Multicore<'p> {
|
|||
|
||||
/// A handle for controlling a logical core.
|
||||
pub struct Core<'p> {
|
||||
inner: Option<(&'p mut pac::PSM, &'p mut pac::PPB, &'p mut crate::Sio)>,
|
||||
inner: Option<(
|
||||
&'p mut pac::PSM,
|
||||
&'p mut pac::PPB,
|
||||
&'p mut crate::sio::SioFifo,
|
||||
)>,
|
||||
}
|
||||
|
||||
impl<'p> Core<'p> {
|
||||
|
@ -140,13 +142,36 @@ impl<'p> Core<'p> {
|
|||
}
|
||||
}
|
||||
|
||||
fn inner_spawn(
|
||||
&mut self,
|
||||
wrapper: *mut (),
|
||||
entry: *mut (),
|
||||
stack: &'static mut [usize],
|
||||
) -> Result<(), Error> {
|
||||
if let Some((psm, ppb, sio)) = self.inner.as_mut() {
|
||||
/// Spawn a function on this core.
|
||||
pub fn spawn<F>(&mut self, stack: &'static mut [usize], entry: F) -> Result<(), Error>
|
||||
where
|
||||
F: FnOnce() -> bad::Never + Send + 'static,
|
||||
{
|
||||
if let Some((psm, ppb, fifo)) = self.inner.as_mut() {
|
||||
// The first two ignored `u64` parameters are there to take up all of the registers,
|
||||
// which means that the rest of the arguments are taken from the stack,
|
||||
// where we're able to put them from core 0.
|
||||
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
|
||||
_: u64,
|
||||
_: u64,
|
||||
entry: &mut ManuallyDrop<F>,
|
||||
stack_bottom: *mut usize,
|
||||
) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
|
||||
let entry = unsafe { ManuallyDrop::take(entry) };
|
||||
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
//
|
||||
// We don't have any way to get at core 1's SIO without using `Peripherals::steal` right now,
|
||||
// since svd2rust doesn't really support multiple cores properly.
|
||||
let peripherals = unsafe { pac::Peripherals::steal() };
|
||||
let mut sio = Sio::new(peripherals.SIO);
|
||||
sio.fifo.write_blocking(1);
|
||||
|
||||
entry()
|
||||
}
|
||||
|
||||
// Reset the core
|
||||
psm.frce_off.modify(|_, w| w.proc1().set_bit());
|
||||
while !psm.frce_off.read().proc1().bit_is_set() {
|
||||
|
@ -157,14 +182,28 @@ impl<'p> Core<'p> {
|
|||
// Set up the stack
|
||||
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
|
||||
|
||||
let mut push = |v: usize| unsafe {
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.write(v);
|
||||
};
|
||||
// We don't want to drop this, since it's getting moved to the other core.
|
||||
let mut entry = ManuallyDrop::new(entry);
|
||||
|
||||
push(wrapper as usize);
|
||||
push(stack.as_mut_ptr() as usize);
|
||||
push(entry as usize);
|
||||
// Push the arguments to `core1_startup` onto the stack.
|
||||
unsafe {
|
||||
// Push `stack_bottom`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
|
||||
|
||||
// Push `entry`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
|
||||
}
|
||||
|
||||
// Make sure the compiler does not reorder the stack writes after to after the
|
||||
// below FIFO writes, which would result in them not being seen by the second
|
||||
// core.
|
||||
//
|
||||
// From the compiler perspective, this doesn't guarantee that the second core
|
||||
// actually sees those writes. However, we know that the RP2040 doesn't have
|
||||
// memory caches, and writes happen in-order.
|
||||
compiler_fence(Ordering::Release);
|
||||
|
||||
let vector_table = ppb.vtor.read().bits();
|
||||
|
||||
|
@ -176,7 +215,7 @@ impl<'p> Core<'p> {
|
|||
1,
|
||||
vector_table as usize,
|
||||
stack_ptr as usize,
|
||||
MULTICORE_TRAMPOLINE.as_ptr() as usize + 1,
|
||||
core1_startup::<F> as usize,
|
||||
];
|
||||
|
||||
let mut seq = 0;
|
||||
|
@ -184,17 +223,20 @@ impl<'p> Core<'p> {
|
|||
loop {
|
||||
let cmd = cmd_seq[seq] as u32;
|
||||
if cmd == 0 {
|
||||
sio.fifo.drain();
|
||||
fifo.drain();
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
sio.fifo.write_blocking(cmd);
|
||||
let response = sio.fifo.read_blocking();
|
||||
fifo.write_blocking(cmd);
|
||||
let response = fifo.read_blocking();
|
||||
if cmd == response {
|
||||
seq += 1;
|
||||
} else {
|
||||
seq = 0;
|
||||
fails += 1;
|
||||
if fails > 16 {
|
||||
// The second core isn't responding, and isn't going to take the entrypoint,
|
||||
// so we have to drop it ourselves.
|
||||
drop(ManuallyDrop::into_inner(entry));
|
||||
return Err(Error::Unresponsive);
|
||||
}
|
||||
}
|
||||
|
@ -203,48 +245,17 @@ impl<'p> Core<'p> {
|
|||
}
|
||||
}
|
||||
|
||||
// Wait until the other core has copied `entry` before returning.
|
||||
fifo.read_blocking();
|
||||
|
||||
Ok(())
|
||||
} else {
|
||||
Err(Error::InvalidCore)
|
||||
}
|
||||
}
|
||||
|
||||
/// Spawn a function on this core.
|
||||
#[cfg(not(feature = "alloc"))]
|
||||
pub fn spawn(&mut self, entry: fn() -> !, stack: &'static mut [usize]) -> Result<(), Error> {
|
||||
#[allow(improper_ctypes_definitions)]
|
||||
extern "C" fn core1_no_alloc(entry: fn() -> !, stack_bottom: *mut usize) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
entry();
|
||||
}
|
||||
|
||||
self.inner_spawn(core1_no_alloc as _, entry as _, stack)
|
||||
}
|
||||
|
||||
/// Spawn a function on this core.
|
||||
#[cfg(feature = "alloc")]
|
||||
pub fn spawn<F>(&mut self, entry: F, stack: &'static mut [usize]) -> Result<(), Error>
|
||||
where
|
||||
F: FnOnce() -> bad::Never,
|
||||
F: Send + 'static,
|
||||
{
|
||||
use alloc::boxed::Box;
|
||||
|
||||
let main: Box<dyn FnOnce() -> bad::Never> = Box::new(move || entry());
|
||||
let p = Box::into_raw(Box::new(main));
|
||||
|
||||
extern "C" fn core1_alloc(entry: *mut (), stack_bottom: *mut usize) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
let main = unsafe { Box::from_raw(entry as *mut Box<dyn FnOnce() -> bad::Never>) };
|
||||
main();
|
||||
}
|
||||
|
||||
self.inner_spawn(core1_alloc as _, p as _, stack)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/nvzqz/bad-rs/blob/master/src/never.rs
|
||||
#[cfg(feature = "alloc")]
|
||||
mod bad {
|
||||
pub(crate) type Never = <F as HasOutput>::Output;
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue