Moved float and double functions into modules.

Makes the docs cleaner.
This commit is contained in:
Jonathan Pallant (42 Technology) 2021-10-11 16:37:16 +01:00
parent ae66ac4cb6
commit e1afb70bd2
2 changed files with 300 additions and 274 deletions

View file

@ -138,7 +138,7 @@ fn main() -> ! {
// Some functions require a look-up in a table. First we do the lookup and // Some functions require a look-up in a table. First we do the lookup and
// find the function pointer in ROM (you only want to do this once per // find the function pointer in ROM (you only want to do this once per
// function). // function).
let fmul = hal::rom_data::fmul(); let fmul = hal::rom_data::float_funcs::fmul();
// Then we can call the function whenever we want // Then we can call the function whenever we want
let start_rom = cortex_m::peripheral::SYST::get_current(); let start_rom = cortex_m::peripheral::SYST::get_current();

View file

@ -209,284 +209,310 @@ pub fn soft_double_table() -> *const usize {
rom_table_lookup(DATA_TABLE, *b"SD") rom_table_lookup(DATA_TABLE, *b"SD")
} }
macro_rules! float_funcs { /// ROM functions using single-precision arithmetic (i.e. 'f64' in Rust terms)
( pub mod float_funcs {
$(
$(#[$outer:meta])* macro_rules! make_functions {
$offset:literal $name:ident ( (
$( $aname:ident : $aty:ty ),* $(
) -> $ret:ty; $(#[$outer:meta])*
)* $offset:literal $name:ident (
) => { $( $aname:ident : $aty:ty ),*
$( ) -> $ret:ty;
$(#[$outer])* )*
pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { ) => {
let table: *const usize = $crate::rom_data::soft_float_table() as *const usize; $(
unsafe { $(#[$outer])*
// This is the entry in the table. Our offset is given as a pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret {
// byte offset, but we want the table index (each pointer in let table: *const usize = $crate::rom_data::soft_float_table() as *const usize;
// the table is 4 bytes long) unsafe {
let entry: *const usize = table.offset($offset / 4); // This is the entry in the table. Our offset is given as a
// Read the pointer from the table // byte offset, but we want the table index (each pointer in
let ptr: usize = core::ptr::read(entry); // the table is 4 bytes long)
// Convert the pointer we read into a function let entry: *const usize = table.offset($offset / 4);
core::mem::transmute_copy(&ptr) // Read the pointer from the table
let ptr: usize = core::ptr::read(entry);
// Convert the pointer we read into a function
core::mem::transmute_copy(&ptr)
}
} }
} )*
)* }
}
make_functions! {
/// Returns a function that will calculate `a + b`
0x00 fadd(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a - b`
0x04 fsub(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a * b`
0x08 fmul(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a / b`
0x0c fdiv(a: f32, b: f32) -> f32;
// 0x10 and 0x14 are deprecated
/// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative)
0x18 fsqrt(v: f32) -> f32;
/// Returns a function that will convert an f32 to a signed integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `-0x80000000` to `0x7FFFFFFF`
0x1c float_to_int(v: f32) -> i32;
/// Returns a function that will convert an f32 to an signed fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x20 float_to_fix(v: f32, n: i32) -> i32;
/// Returns a function that will convert an f32 to an unsigned integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `0x00000000` to `0xFFFFFFFF`
0x24 float_to_uint(v: f32) -> u32;
/// Returns a function that will convert an f32 to an unsigned fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x28 float_to_ufix(v: f32, n: i32) -> u32;
/// Returns a function that will convert a signed integer to the nearest
/// f32 value, rounding to even on tie
0x2c int_to_float(v: i32) -> f32;
/// Returns a function that will convert a signed fixed point integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x30 fix_to_float(v: i32, n: i32) -> f32;
/// Returns a function that will convert an unsigned integer to the nearest
/// f32 value, rounding to even on tie
0x34 uint_to_float(v: u32) -> f32;
/// Returns a function that will convert an unsigned fixed point integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x38 ufix_to_float(v: u32, n: i32) -> f32;
/// Returns a function that will calculate the cosine of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x3c fcos(angle: f32) -> f32;
/// Returns a function that will calculate the sine of `angle`. The value of
/// `angle` is in radians, and must be in the range `-1024` to `1024`
0x40 fsin(angle: f32) -> f32;
/// Returns a function that will calculate the tangent of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x44 ftan(angle: f32) -> f32;
// 0x48 is deprecated
/// Returns a function that will calculate the exponential value of `v`,
/// i.e. `e ** v`
0x4c fexp(v: f32) -> f32;
/// Returns a function that will calculate the natural logarithm of `v`. If `v <= 0` return -Infinity
0x50 fln(v: f32) -> f32;
// These are only on BootROM v2 or higher
/// Returns a function that will compare two floating point numbers, returning:
/// • 0 if a == b
/// • -1 if a < b
/// • 1 if a > b
0x54 fcmp(a: f32, b: f32) -> i32;
/// Returns a function that will compute the arc tangent of `y/x` using the
/// signs of arguments to determine the correct quadrant
0x58 fatan2(y: f32, x: f32) -> f32;
/// Returns a function that will convert a signed 64-bit integer to the
/// nearest f32 value, rounding to even on tie
0x5c int64_to_float(v: i64) -> f32;
/// Returns a function that will convert a signed fixed point 64-bit integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x60 fix64_to_float(v: i64, n: i32) -> f32;
/// Returns a function that will convert an unsigned 64-bit integer to the
/// nearest f32 value, rounding to even on tie
0x64 uint64_to_float(v: u64) -> f32;
/// Returns a function that will convert an unsigned fixed point 64-bit
/// integer representation to the nearest f32 value, rounding to even on
/// tie. `n` specifies the position of the binary point in fixed point, so
/// `f = nearest(v/(2^n))`
0x68 ufix64_to_float(v: u64, n: i32) -> f32;
/// Convert an f32 to a signed 64-bit integer, rounding towards -Infinity,
/// and clamping the result to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x6c float_to_int64(v: f32) -> i64;
/// Returns a function that will convert an f32 to a signed fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation - e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x70 float_to_fix64(v: f32, n: i32) -> f32;
/// Returns a function that will convert an f32 to an unsigned 64-bit
/// integer, rounding towards -Infinity, and clamping the result to lie
/// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
0x74 float_to_uint64(v: f32) -> u64;
/// Returns a function that will convert an f32 to an unsigned fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation, e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `0x0000000000000000` to
/// `0xFFFFFFFFFFFFFFFF`
0x78 float_to_ufix64(v: f32, n: i32) -> u64;
/// Converts an f32 to an f64.
0x7c float_to_double(v: f32) -> f64;
} }
} }
float_funcs! { /// Functions using double-precision arithmetic (i.e. 'f64' in Rust terms)
/// Returns a function that will calculate `a + b` pub mod double_funcs {
0x00 fadd(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a - b`
0x04 fsub(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a * b`
0x08 fmul(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `a / b`
0x0c fdiv(a: f32, b: f32) -> f32;
/// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative)
0x18 fsqrt(v: f32) -> f32;
/// Returns a function that will convert an f32 to a signed integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `-0x80000000` to `0x7FFFFFFF`
0x1c float_to_int(v: f32) -> i32;
/// Returns a function that will convert an f32 to an signed fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x20 float_to_fix(v: f32, n: i32) -> i32;
/// Returns a function that will convert an f32 to an unsigned integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `0x00000000` to `0xFFFFFFFF`
0x24 float_to_uint(v: f32) -> u32;
/// Returns a function that will convert an f32 to an unsigned fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x28 float_to_ufix(v: f32, n: i32) -> u32;
/// Returns a function that will convert a signed integer to the nearest
/// f32 value, rounding to even on tie
0x2c int_to_float(v: i32) -> f32;
/// Returns a function that will convert a signed fixed point integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x30 fix_to_float(v: i32, n: i32) -> f32;
/// Returns a function that will convert an unsigned integer to the nearest
/// f32 value, rounding to even on tie
0x34 uint_to_float(v: u32) -> f32;
/// Returns a function that will convert an unsigned fixed point integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x38 ufix_to_float(v: u32, n: i32) -> f32;
/// Returns a function that will calculate the cosine of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x3c fcos(angle: f32) -> f32;
/// Returns a function that will calculate the sine of `angle`. The value of
/// `angle` is in radians, and must be in the range `-1024` to `1024`
0x40 fsin(angle: f32) -> f32;
/// Returns a function that will calculate the tangent of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x44 ftan(angle: f32) -> f32;
/// Returns a function that will calculate the exponential value of `v`,
/// i.e. `e ** v`
0x4c fexp(v: f32) -> f32;
/// Returns a function that will calculate the natural logarithm of `v`. If `v <= 0` return -Infinity
0x50 fln(v: f32) -> f32;
/// Returns a function that will compare two floating point numbers, returning:
/// • 0 if a == b
/// • -1 if a < b
/// • 1 if a > b
0x54 fcmp(a: f32, b: f32) -> i32;
/// Returns a function that will compute the arc tangent of `y/x` using the
/// signs of arguments to determine the correct quadrant
0x58 fatan2(y: f32, x: f32) -> f32;
/// Returns a function that will convert a signed 64-bit integer to the
/// nearest f32 value, rounding to even on tie
0x5c int64_to_float(v: i64) -> f32;
/// Returns a function that will convert a signed fixed point 64-bit integer
/// representation to the nearest f32 value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x60 fix64_to_float(v: i64, n: i32) -> f32;
/// Returns a function that will convert an unsigned 64-bit integer to the
/// nearest f32 value, rounding to even on tie
0x64 uint64_to_float(v: u64) -> f32;
/// Returns a function that will convert an unsigned fixed point 64-bit
/// integer representation to the nearest f32 value, rounding to even on
/// tie. `n` specifies the position of the binary point in fixed point, so
/// `f = nearest(v/(2^n))`
0x68 ufix64_to_float(v: u64, n: i32) -> f32;
/// Convert an f32 to a signed 64-bit integer, rounding towards -Infinity,
/// and clamping the result to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x6c float_to_int64(v: f32) -> i64;
/// Returns a function that will convert a f32 to a signed fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation - e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x70 float_to_fix64(v: f32, n: i32) -> f32;
/// Returns a function that will convert an f32 to an unsigned 64-bit
/// integer, rounding towards -Infinity, and clamping the result to lie
/// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
0x74 float_to_uint64(v: f32) -> u64;
/// Returns a function that will convert an f32 to an unsigned fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation, e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `0x0000000000000000` to
/// `0xFFFFFFFFFFFFFFFF`
0x78 float_to_ufix64(v: f32, n: i32) -> u64;
/// Converts an f32 to an f64.
0x7c float_to_double(v: f32) -> f64;
}
macro_rules! double_funcs { macro_rules! make_double_funcs {
( (
$( $(
$(#[$outer:meta])* $(#[$outer:meta])*
$offset:literal $name:ident ( $offset:literal $name:ident (
$( $aname:ident : $aty:ty ),* $( $aname:ident : $aty:ty ),*
) -> $ret:ty; ) -> $ret:ty;
)* )*
) => { ) => {
$( $(
$(#[$outer])* $(#[$outer])*
pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret {
let table: *const usize = $crate::rom_data::soft_double_table() as *const usize; let table: *const usize = $crate::rom_data::soft_double_table() as *const usize;
unsafe { unsafe {
// This is the entry in the table. Our offset is given as a // This is the entry in the table. Our offset is given as a
// byte offset, but we want the table index (each pointer in // byte offset, but we want the table index (each pointer in
// the table is 4 bytes long) // the table is 4 bytes long)
let entry: *const usize = table.offset($offset / 4); let entry: *const usize = table.offset($offset / 4);
// Read the pointer from the table // Read the pointer from the table
let ptr: usize = core::ptr::read(entry); let ptr: usize = core::ptr::read(entry);
// Convert the pointer we read into a function // Convert the pointer we read into a function
core::mem::transmute_copy(&ptr) core::mem::transmute_copy(&ptr)
}
} }
} )*
)* }
}
make_double_funcs! {
/// Returns a function that will calculate `a + b`
0x00 dadd(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a - b`
0x04 dsub(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a * b`
0x08 dmul(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a / b`
0x0c ddiv(a: f64, b: f64) -> f64;
// 0x10 and 0x14 are deprecated
/// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative)
0x18 dsqrt(v: f64) -> f64;
/// Returns a function that will convert an f64 to a signed integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `-0x80000000` to `0x7FFFFFFF`
0x1c double_to_int(v: f64) -> i32;
/// Returns a function that will convert an f64 to an signed fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x20 double_to_fix(v: f64, n: i32) -> i32;
/// Returns a function that will convert an f64 to an unsigned integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `0x00000000` to `0xFFFFFFFF`
0x24 double_to_uint(v: f64) -> u32;
/// Returns a function that will convert an f64 to an unsigned fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x28 double_to_ufix(v: f64, n: i32) -> u32;
/// Returns a function that will convert a signed integer to the nearest
/// double value, rounding to even on tie
0x2c int_to_double(v: i32) -> f64;
/// Returns a function that will convert a signed fixed point integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x30 fix_to_double(v: i32, n: i32) -> f64;
/// Returns a function that will convert an unsigned integer to the nearest
/// double value, rounding to even on tie
0x34 uint_to_double(v: u32) -> f64;
/// Returns a function that will convert an unsigned fixed point integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so f =
/// nearest(v/(2^n))
0x38 ufix_to_double(v: u32, n: i32) -> f64;
/// Returns a function that will calculate the cosine of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x3c dcos(angle: f64) -> f64;
/// Returns a function that will calculate the sine of `angle`. The value of
/// `angle` is in radians, and must be in the range `-1024` to `1024`
0x40 dsin(angle: f64) -> f64;
/// Returns a function that will calculate the tangent of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x44 dtan(angle: f64) -> f64;
// 0x48 is deprecated
/// Returns a function that will calculate the exponential value of `v`,
/// i.e. `e ** v`
0x4c dexp(v: f64) -> f64;
/// Returns a function that will calculate the natural logarithm of v. If v <= 0 return -Infinity
0x50 dln(v: f64) -> f64;
// These are only on BootROM v2 or higher
/// Returns a function that will compare two floating point numbers, returning:
/// • 0 if a == b
/// • -1 if a < b
/// • 1 if a > b
0x54 dcmp(a: f64, b: f64) -> i32;
/// Returns a function that will compute the arc tangent of `y/x` using the
/// signs of arguments to determine the correct quadrant
0x58 datan2(y: f64, x: f64) -> f64;
/// Returns a function that will convert a signed 64-bit integer to the
/// nearest double value, rounding to even on tie
0x5c int64_to_double(v: i64) -> f64;
/// Returns a function that will convert a signed fixed point 64-bit integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x60 fix64_to_doubl(v: i64, n: i32) -> f64;
/// Returns a function that will convert an unsigned 64-bit integer to the
/// nearest double value, rounding to even on tie
0x64 uint64_to_double(v: u64) -> f64;
/// Returns a function that will convert an unsigned fixed point 64-bit
/// integer representation to the nearest double value, rounding to even on
/// tie. `n` specifies the position of the binary point in fixed point, so
/// `f = nearest(v/(2^n))`
0x68 ufix64_to_double(v: u64, n: i32) -> f64;
/// Convert an f64 to a signed 64-bit integer, rounding towards -Infinity,
/// and clamping the result to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x6c double_to_int64(v: f64) -> i64;
/// Returns a function that will convert an f64 to a signed fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation - e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x70 double_to_fix64(v: f64, n: i32) -> i64;
/// Returns a function that will convert an f64 to an unsigned 64-bit
/// integer, rounding towards -Infinity, and clamping the result to lie
/// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
0x74 double_to_uint64(v: f64) -> u64;
/// Returns a function that will convert an f64 to an unsigned fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation, e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `0x0000000000000000` to
/// `0xFFFFFFFFFFFFFFFF`
0x78 double_to_ufix64(v: f64, n: i32) -> u64;
/// Returns a function that will convert an f64 to an f32
0x7c double_to_float(v: f64) -> f32;
} }
} }
double_funcs! {
/// Returns a function that will calculate `a + b`
0x00 dadd(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a - b`
0x04 dsub(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a * b`
0x08 dmul(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `a / b`
0x0c ddiv(a: f64, b: f64) -> f64;
/// Returns a function that will calculate `sqrt(v)` (or return -Infinity if v is negative)
0x18 dsqrt(v: f64) -> f64;
/// Returns a function that will convert an f64 to a signed integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `-0x80000000` to `0x7FFFFFFF`
0x1c double_to_int(v: f64) -> i32;
/// Returns a function that will convert an f64 to an signed fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x20 double_to_fix(v: f64, n: i32) -> i32;
/// Returns a function that will convert an f64 to an unsigned integer,
/// rounding towards -Infinity, and clamping the result to lie within the
/// range `0x00000000` to `0xFFFFFFFF`
0x24 double_to_uint(v: f64) -> u32;
/// Returns a function that will convert an f64 to an unsigned fixed point
/// integer representation where n specifies the position of the binary
/// point in the resulting fixed point representation, e.g.
/// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity,
/// and clamps the resulting integer to lie within the range `0x00000000` to
/// `0xFFFFFFFF`
0x28 double_to_ufix(v: f64, n: i32) -> u32;
/// Returns a function that will convert a signed integer to the nearest
/// double value, rounding to even on tie
0x2c int_to_double(v: i32) -> f64;
/// Returns a function that will convert a signed fixed point integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x30 fix_to_double(v: i32, n: i32) -> f64;
/// Returns a function that will convert an unsigned integer to the nearest
/// double value, rounding to even on tie
0x34 uint_to_double(v: u32) -> f64;
/// Returns a function that will convert an unsigned fixed point integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so f =
/// nearest(v/(2^n))
0x38 ufix_to_double(v: u32, n: i32) -> f64;
/// Returns a function that will calculate the cosine of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x3c dcos(angle: f64) -> f64;
/// Returns a function that will calculate the sine of `angle`. The value of
/// `angle` is in radians, and must be in the range -1024 to 1024
0x40 dsin(angle: f64) -> f64;
/// Returns a function that will calculate the tangent of `angle`. The value
/// of `angle` is in radians, and must be in the range `-1024` to `1024`
0x44 dtan(angle: f64) -> f64;
/// Returns a function that will calculate the exponential value of `v`,
/// i.e. `e ** v`
0x4c dexp(v: f64) -> f64;
/// Returns a function that will calculate the natural logarithm of v. If v <= 0 return -Infinity
0x50 dln(v: f64) -> f64;
/// Returns a function that will compare two floating point numbers, returning:
/// • 0 if a == b
/// • -1 if a < b
/// • 1 if a > b
0x54 dcmp(a: f64, b: f64) -> i32;
/// Returns a function that will compute the arc tangent of `y/x` using the
/// signs of arguments to determine the correct quadrant
0x58 datan2(y: f64, x: f64) -> f64;
/// Returns a function that will convert a signed 64-bit integer to the
/// nearest double value, rounding to even on tie
0x5c int64_to_double(v: i64) -> f64;
/// Returns a function that will convert a signed fixed point 64-bit integer
/// representation to the nearest double value, rounding to even on tie. `n`
/// specifies the position of the binary point in fixed point, so `f =
/// nearest(v/(2^n))`
0x60 fix64_to_doubl(v: i64, n: i32) -> f64;
/// Returns a function that will convert an unsigned 64-bit integer to the
/// nearest double value, rounding to even on tie
0x64 uint64_to_double(v: u64) -> f64;
/// Returns a function that will convert an unsigned fixed point 64-bit
/// integer representation to the nearest double value, rounding to even on
/// tie. `n` specifies the position of the binary point in fixed point, so
/// `f = nearest(v/(2^n))`
0x68 ufix64_to_double(v: u64, n: i32) -> f64;
/// Convert an f64 to a signed 64-bit integer, rounding towards -Infinity,
/// and clamping the result to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x6c double_to_int64(v: f64) -> i64;
/// Returns a function that will convert an f64 to a signed fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation - e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `-0x8000000000000000` to
/// `0x7FFFFFFFFFFFFFFF`
0x70 double_to_fix64(v: f64, n: i32) -> i64;
/// Returns a function that will convert an f64 to an unsigned 64-bit
/// integer, rounding towards -Infinity, and clamping the result to lie
/// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF`
0x74 double_to_uint64(v: f64) -> u64;
/// Returns a function that will convert an f64 to an unsigned fixed point
/// 64-bit integer representation where n specifies the position of the
/// binary point in the resulting fixed point representation, e.g. `f(0.5f,
/// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the
/// resulting integer to lie within the range `0x0000000000000000` to
/// `0xFFFFFFFFFFFFFFFF`
0x78 double_to_ufix64(v: f64, n: i32) -> u64;
/// Returns a function that will convert an f64 to a f32
0x7c double_to_float(v: f64) -> f32;
}