Working implementation of a PLL HAL.

This commit is contained in:
Nic0w 2021-04-25 10:12:38 +02:00
parent b0de7c9be6
commit ff418b0453
3 changed files with 229 additions and 0 deletions

View file

@ -14,3 +14,4 @@ cortex-m = "0.7.1"
embedded-hal = "0.2.4" embedded-hal = "0.2.4"
nb = "1.0.0" nb = "1.0.0"
rp2040-pac = "0.1.1" rp2040-pac = "0.1.1"
embedded-time = "0.10.1"

View file

@ -14,6 +14,7 @@ pub extern crate rp2040_pac as pac;
pub mod adc; pub mod adc;
pub mod i2c; pub mod i2c;
pub mod pll;
pub mod prelude; pub mod prelude;
pub mod pwm; pub mod pwm;
pub mod rom_data; pub mod rom_data;

227
rp2040-hal/src/pll.rs Normal file
View file

@ -0,0 +1,227 @@
//! Phase-Locked Loops (PLL)
// See [Chapter 2 Section 18](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
use core::{
convert::{
Infallible,
TryFrom
},
marker::PhantomData,
ops::{
RangeInclusive,
Range,
Deref
}
};
use embedded_time::{
fixed_point::FixedPoint,
rate::{
Hertz,
Generic
}
};
use nb::Error::WouldBlock;
/// State of the PLL
pub trait State {}
/// PLL is disabled but is configured.
pub struct Disabled {
refdiv: u8,
vco_freq: Hertz,
post_div1: u8,
post_div2: u8
}
/// PLL is locked : it delivers a steady frequency.
pub struct Locked;
/// PLL is locking into its designated frequency.
pub struct Locking {
post_div1: u8,
post_div2: u8
}
impl State for Disabled {}
impl State for Locked {}
impl State for Locking {}
/// Trait to handle both underlying devices from the PAC (PLL_SYS & PLL_USB)
pub trait PhaseLockedLoopDevice: Deref<Target = rp2040_pac::pll_sys::RegisterBlock> {}
impl PhaseLockedLoopDevice for rp2040_pac::PLL_SYS {}
impl PhaseLockedLoopDevice for rp2040_pac::PLL_USB {}
/// A PLL.
pub struct PhaseLockedLoop<S: State, D: PhaseLockedLoopDevice> {
device: D,
state: S
}
impl<S: State, D: PhaseLockedLoopDevice> PhaseLockedLoop<S, D> {
fn transition<To: State>(self, state: To) -> PhaseLockedLoop<To, D> {
PhaseLockedLoop {
device: self.device,
state: state
}
}
/// Releases the underlying device.
pub fn free(self) -> D{
self.device
}
}
/// Error type for the PLL module.
/// See Chapter 2, Section 18 §2 for details on constraints triggering these errors.
pub enum Error {
/// Proposed VCO frequency is out of range.
VCOFreqOutOfRange,
/// Feedback Divider value is out of range.
FBDIVOutOfRange,
/// Post Divider value is out of range.
PostDivOutOfRage,
/// Reference Frequency is out of range.
RefFreqOutOfRange,
/// Bad argument : overflows, bad conversion, ...
BadArgument
}
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Disabled, D> {
/// Instantiates and configures a new Phase-Locked-Loop device.
pub fn new(dev: D, refdiv: u8, vco_freq: Generic<u32>, post_div1: u8, post_div2: u8) -> Result<PhaseLockedLoop<Disabled, D>, Error> {
const VCO_FREQ_RANGE: RangeInclusive<Hertz<u32>> = Hertz(400_000_000)..=Hertz(1600_000_000);
const POSTDIV_RANGE: Range<u8> = 1..7;
let vco_freq = Hertz::<u32>::try_from(vco_freq).map_err(|_| Error::BadArgument)?;
if !VCO_FREQ_RANGE.contains(&vco_freq) {
return Err(Error::VCOFreqOutOfRange)
}
if !POSTDIV_RANGE.contains(&post_div1) || !POSTDIV_RANGE.contains(&post_div2) {
return Err(Error::PostDivOutOfRage)
}
Ok(PhaseLockedLoop {
state: Disabled {
refdiv, vco_freq, post_div1, post_div2
},
device: dev,
})
}
/// Configures and starts the PLL : it switches to Locking state.
pub fn initialize(self, xosc_frequency: Generic<u32>) -> Result<PhaseLockedLoop<Locking, D>, Error>{
const FBDIV_RANGE: Range<u16> = 16..320;
let ref_freq_range: Range<Hertz<u32>> = Hertz(5_000_000)..self.state.vco_freq.div(16);
// Turn off PLL in case it is already running
self.device.pwr.reset();
self.device.fbdiv_int.reset();
let refdiv = self.state.refdiv;
let ref_freq_hz = Hertz::<u32>::try_from(xosc_frequency).
map_err(|_| Error::BadArgument)?.
checked_div(&(refdiv as u32)).
ok_or(Error::BadArgument)?;
if !ref_freq_range.contains(&ref_freq_hz) {
return Err(Error::RefFreqOutOfRange)
}
self.device.cs.write(|w| unsafe {
w.refdiv().bits(refdiv as u8);
w
});
let fbdiv = *self.state.vco_freq.checked_div(ref_freq_hz.integer()).
ok_or(Error::BadArgument)?.integer() as u16;
if !FBDIV_RANGE.contains(&fbdiv) {
return Err(Error::FBDIVOutOfRange)
}
self.device.fbdiv_int.write(|w| unsafe {
w.fbdiv_int().bits(fbdiv);
w
});
self.device.cs.write(|w| unsafe {
w.refdiv().bits(refdiv);
w
});
// Turn on self.device
self.device.pwr.write(|w| unsafe {
//w.pd().clear_bit();
//w.vcopd().clear_bit();
w.bits(0);
w
});
let post_div1 = self.state.post_div1;
let post_div2 = self.state.post_div2;
Ok(self.transition(Locking {
post_div1, post_div2
}))
}
}
/// A token that's given when the PLL is properly locked, so we can safely transition to the next state.
pub struct LockedPLLToken<D> {
_private: PhantomData<D>
}
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Locking, D> {
/// Awaits locking of the PLL.
pub fn await_lock(&self) -> nb::Result<LockedPLLToken<D>, Infallible> {
if self.device.cs.read().lock().bit_is_clear() {
return Err(WouldBlock);
}
Ok(LockedPLLToken {
_private: PhantomData
})
}
/// Exchanges a token for a Locked PLL.
pub fn get_locked(self, _token: LockedPLLToken<D>) -> PhaseLockedLoop<Locked, D> {
// Set up post dividers
self.device.prim.write(|w| unsafe {
w.postdiv1().bits(self.state.post_div1);
w.postdiv2().bits(self.state.post_div2);
w
});
// Turn on post divider
self.device.pwr.write(|w| unsafe {
//w.postdivpd().clear_bit();
w.bits(0);
w
});
self.transition(Locked)
}
}