Improve clock frequency stuff for uninitialized clocks and add some examples (#64)

* Improve clock frequency stuff for uninitialized clocks

- Made clocks singletons so the frequency handling actually works as expected
- Added initial frequencies
- Improved the docs
- Added a Clock trait

* Add pico examples.

These have the benefit of knowing which external crystal is attached.
Even though it always should be a 12 MHz crystal.
Thus we can setup the clocks properly

I also changed the rp2040 examples to work out of the box for pico boards since that will probably be used most of the time
This commit is contained in:
Hmvp 2021-07-26 12:24:58 +02:00 committed by GitHub
parent 25cf81fdfe
commit ffa97842e2
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
16 changed files with 700 additions and 374 deletions

View file

@ -55,11 +55,14 @@ To get a local copy up and running follow these simple steps.
### Installation
1. Clone the repo or use the crate
```
```sh
git clone https://github.com/rp-rs/rp-hal
```
or
```
or
```sh
cargo install rpXXXX-hal
```
@ -70,7 +73,25 @@ Use this space to show useful examples of how a project can be used. Additional
For more examples, please refer to the [Documentation](https://github.com/rp-rs/rp-hal)
### Run examples
Install [`uf2conv`](https://github.com/sajattack/uf2conv-rs) and [`cargo-binutils`](https://github.com/rust-embedded/cargo-binutils) as well as the `llvm-tools-preview` component:
```sh
cargo install uf2conv cargo-binutils
rustup component add llvm-tools-preview
```
For boards with uf2 flashloaders you can use the following lines to run the examples:
```sh
export RPI_MOUNT_FOLDER=/media/RPI-RP2/
export EXAMPLE=pico_blinky; # See `cargo check --example` for valid values
cargo check --example $EXAMPLE && \
cargo objcopy --release --example $EXAMPLE -- -O binary target/$EXAMPLE.bin && \
uf2conv target/$EXAMPLE.bin --base 0x10000000 --family 0xe48bff56 --output target/$EXAMPLE.uf2 && \
cp target/$EXAMPLE.uf2 $RPI_MOUNT_FOLDER
```
<!-- ROADMAP -->
## Roadmap
@ -80,7 +101,6 @@ NOTE This HAL is under active development. As such, it is likely to remain volat
See the [open issues](https://github.com/rp-rs/rp-hal/issues) for a list of proposed features (and known issues).
<!-- CONTRIBUTING -->
## Contributing

View file

@ -13,6 +13,12 @@ license = "MIT OR Apache-2.0"
cortex-m = "0.7.2"
rp2040-hal = { path = "../../rp2040-hal", version = "0.1.0" }
cortex-m-rt = { version = "0.6.14", optional = true }
embedded-time = "0.10.1"
[dev-dependencies]
panic-halt= "0.2.0"
embedded-hal ="0.2.5"
rp2040-boot2 = "0.1.2"
[features]
default = ["rt"]

View file

@ -0,0 +1,60 @@
//! Blinks the LED on a Pico board
//!
//! This will blink an LED attached to GP25, which is the pin the Pico uses for the on-board LED.
#![no_std]
#![no_main]
use cortex_m_rt::entry;
use embedded_hal::digital::v2::OutputPin;
use embedded_time::rate::*;
use panic_halt as _;
use pico::{
hal::{
clocks::{init_clocks_and_plls, Clock},
pac,
sio::Sio,
watchdog::Watchdog,
},
Pins, XOSC_CRYSTAL_FREQ,
};
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
#[entry]
fn main() -> ! {
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
let clocks = init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
let mut delay = cortex_m::delay::Delay::new(core.SYST, *clocks.system_clock.freq().integer());
let sio = Sio::new(pac.SIO);
let pins = Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
let mut led_pin = pins.led.into_push_pull_output();
loop {
led_pin.set_high().unwrap();
delay.delay_ms(500);
led_pin.set_low().unwrap();
delay.delay_ms(500);
}
}

View file

@ -0,0 +1,41 @@
//! Toggle LED based on GPIO input
//!
//! This will control an LED on GP25 based on a button hooked up to GP15. The button should be tied
//! to ground, as the input pin is pulled high internally by this example. When the button is
//! pressed, the LED will turn off.
#![no_std]
#![no_main]
use cortex_m_rt::entry;
use embedded_hal::digital::v2::{InputPin, OutputPin};
use hal::pac;
use hal::sio::Sio;
use panic_halt as _;
use pico::{hal, Pins};
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
#[entry]
fn main() -> ! {
let mut pac = pac::Peripherals::take().unwrap();
let sio = Sio::new(pac.SIO);
let pins = Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
let mut led_pin = pins.led.into_push_pull_output();
let button_pin = pins.bootsel.into_pull_down_input();
loop {
if button_pin.is_low().unwrap() {
led_pin.set_high().unwrap();
} else {
led_pin.set_low().unwrap();
}
}
}

View file

@ -0,0 +1,77 @@
//! Blinks the LED on a Pico board
//!
//! This will fade in/out the LED attached to GP25, which is the pin the Pico uses for the on-board LED.
#![no_std]
#![no_main]
use cortex_m_rt::entry;
use embedded_hal::PwmPin;
use embedded_time::fixed_point::FixedPoint;
use panic_halt as _;
use pico::{
hal::{
clocks::{init_clocks_and_plls, Clock},
pac,
pwm::*,
watchdog::Watchdog,
},
XOSC_CRYSTAL_FREQ,
};
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
const LOW: u16 = 0;
const HIGH: u16 = 25000;
#[entry]
fn main() -> ! {
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
let mut watchdog = Watchdog::new(pac.WATCHDOG);
let clocks = init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
let mut delay = cortex_m::delay::Delay::new(core.SYST, *clocks.system_clock.freq().integer());
let mut pwm_pin = Pwm4::new(25);
//Instead of having it take references to all of these pac objects, eventually this should just
//take ownership of a GPIO pin.
pwm_pin.default_config(
&mut pac.PWM,
&mut pac.PADS_BANK0,
&mut pac.IO_BANK0,
&mut pac.RESETS,
);
pwm_pin.set_ph_correct();
pwm_pin.enable();
loop {
for i in (LOW..=HIGH).skip(100) {
delay.delay_us(8);
pwm_pin.set_duty(i);
}
for i in (LOW..=HIGH).rev().skip(100) {
delay.delay_us(8);
pwm_pin.set_duty(i);
}
delay.delay_ms(500);
}
}

View file

@ -1,6 +1,6 @@
#![no_std]
extern crate rp2040_hal as hal;
pub extern crate rp2040_hal as hal;
#[cfg(feature = "rt")]
extern crate cortex_m_rt;
@ -43,3 +43,5 @@ hal::bsp_pins!(
name: voltage_monitor
},
);
pub const XOSC_CRYSTAL_FREQ: u32 = 12_000_000;

View file

@ -92,3 +92,5 @@ hal::bsp_pins!(
Gpio27 { name: adc1 },
Gpio28 { name: adc2 },
);
pub const XOSC_CRYSTAL_FREQ: u32 = 12_000_000;

View file

@ -41,3 +41,5 @@ hal::bsp_pins!(
Gpio28 { name: gpio28 },
Gpio29 { name: batt_sense },
);
pub const XOSC_CRYSTAL_FREQ: u32 = 12_000_000;

View file

@ -29,10 +29,10 @@ fn main() -> ! {
&mut pac.RESETS,
);
let mut led_pin = pins.gpio25.into_push_pull_output();
let button_pin = pins.gpio15.into_pull_up_input();
let button_pin = pins.gpio23.into_pull_down_input();
loop {
if button_pin.is_high().unwrap() {
if button_pin.is_low().unwrap() {
led_pin.set_high().unwrap();
} else {
led_pin.set_low().unwrap();

View file

@ -14,7 +14,7 @@ pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
fn main() -> ! {
let mut pac = rp2040_pac::Peripherals::take().unwrap();
let mut pwm_pin = Pwm0::new(0);
let mut pwm_pin = Pwm4::new(25);
//Instead of having it take references to all of these pac objects, eventually this should just
//take ownership of a GPIO pin.

View file

@ -1,253 +0,0 @@
//! Available clocks
use super::{ClocksManager, ShareableClocks};
use crate::{
gpio::{
bank0::{Gpio20, Gpio22},
FunctionClock, Pin,
},
pll::{Locked, PhaseLockedLoop},
rosc::{Enabled, RingOscillator},
typelevel::Sealed,
xosc::{CrystalOscillator, Stable},
};
use core::{convert::TryInto, marker::PhantomData};
use embedded_time::rate::*;
use pac::{PLL_SYS, PLL_USB};
fn make_div<S: TryInto<Hertz<u64>>, F: TryInto<Hertz<u64>>>(
src_freq: S,
freq: F,
) -> Result<u32, ()> {
let src_freq = *src_freq.try_into().map_err(|_| ())?.integer();
let freq = *freq.try_into().map_err(|_| ())?.integer();
let div: u64 = (src_freq << 8).wrapping_div(freq);
Ok(div as u32)
}
/// For clocks with a divider
trait ClockDivision {
/// Set integer divider value.
fn set_div(&mut self, div: u32);
/// Get integer diveder value.
fn get_div(&self) -> u32;
}
/// Clock with glitchless source
pub trait GlitchlessClock {
/// Self type to hand to ChangingClockToken
type Clock: GlitchlessClock;
/// Await switching clock sources without glitches. Needs a token that is returned when setting
fn await_select(&self, clock_token: &ChangingClockToken<Self::Clock>) -> nb::Result<(), ()>;
}
/// Token which can be used to await the glitchless switch
pub struct ChangingClockToken<G: GlitchlessClock> {
clock_nr: u8,
clock: PhantomData<G>,
}
/// For clocks that can be disabled
pub trait StoppableClock {
/// Enables the clock.
fn enable(&mut self);
/// Disables the clock.
fn disable(&mut self);
/// Kills the clock.
fn kill(&mut self);
}
/// Trait for things that can be used as clock source
pub trait ClockSource: Sealed {
/// Get the operating frequency for this source
///
/// Used to determine the divisor
fn get_freq(&self) -> Hertz;
}
type PllSys = PhaseLockedLoop<Locked, PLL_SYS>;
impl Sealed for PllSys {}
impl ClockSource for PllSys {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
type PllUsb = PhaseLockedLoop<Locked, PLL_USB>;
impl Sealed for PllUsb {}
impl ClockSource for PllUsb {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
impl ClockSource for UsbClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for AdcClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for RtcClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for SystemClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for ReferenceClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
type Xosc = CrystalOscillator<Stable>;
impl Sealed for Xosc {}
impl ClockSource for Xosc {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
type Rosc = RingOscillator<Enabled>;
impl Sealed for Rosc {}
// We are assuming the second output is never phase shifted (see 2.17.4)
impl ClockSource for RingOscillator<Enabled> {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
// GPIN0
type GPin0 = Pin<Gpio20, FunctionClock>;
impl ClockSource for GPin0 {
fn get_freq(&self) -> Hertz {
todo!()
}
}
// GPIN1
type GPin1 = Pin<Gpio22, FunctionClock>;
impl ClockSource for Pin<Gpio22, FunctionClock> {
fn get_freq(&self) -> Hertz {
todo!()
}
}
/// Trait to contrain which ClockSource is valid for which Clock
pub trait ValidSrc<Clock>: Sealed {
/// Which register values are acceptable
type Variant;
/// Is this a ClockSource for src or aux?
fn is_aux(&self) -> bool;
/// Get register value for this ClockSource
fn variant(&self) -> Self::Variant;
}
clock!(
/// GPIO Output 0 Clock
struct GpioOutput0Clock {
reg: clk_gpout0,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
);
clock!(
/// GPIO Output 1 Clock
struct GpioOutput1Clock {
reg: clk_gpout1,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
);
clock!(
/// GPIO Output 2 Clock
struct GpioOutput2Clock {
reg: clk_gpout2,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
);
clock!(
/// GPIO Output 3 Clock
struct GpioOutput3Clock {
reg: clk_gpout3,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
);
clock!(
/// Reference Clock
struct ReferenceClock {
reg: clk_ref,
src: {Rosc: ROSC_CLKSRC_PH, Xosc:XOSC_CLKSRC},
auxsrc: {PllUsb:CLKSRC_PLL_USB, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
);
clock!(
/// System Clock
struct SystemClock {
reg: clk_sys,
src: {ReferenceClock: CLK_REF},
auxsrc: {PllSys: CLKSRC_PLL_SYS, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
);
clock!(
/// Peripheral Clock
struct PeripheralClock {
reg: clk_peri,
auxsrc: {SystemClock: CLK_SYS, PllSys: CLKSRC_PLL_SYS, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1 },
div: false
}
);
clock!(
/// USB Clock
struct UsbClock {
reg: clk_usb,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
);
clock!(
/// Adc Clock
struct AdcClock {
reg: clk_adc,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
);
clock!(
/// RTC Clock
struct RtcClock {
reg: clk_rtc,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
);
impl SystemClock {
fn get_default_clock_source(&self) -> pac::clocks::clk_sys_ctrl::SRC_A {
pac::clocks::clk_sys_ctrl::SRC_A::CLK_REF
}
fn get_aux_source(&self) -> pac::clocks::clk_sys_ctrl::SRC_A {
pac::clocks::clk_sys_ctrl::SRC_A::CLKSRC_CLK_SYS_AUX
}
}
impl ReferenceClock {
fn get_default_clock_source(&self) -> pac::clocks::clk_ref_ctrl::SRC_A {
pac::clocks::clk_ref_ctrl::SRC_A::ROSC_CLKSRC_PH
}
fn get_aux_source(&self) -> pac::clocks::clk_ref_ctrl::SRC_A {
pac::clocks::clk_ref_ctrl::SRC_A::CLKSRC_CLK_REF_AUX
}
}

View file

@ -0,0 +1,93 @@
//! Available clocks
use super::*;
use crate::{
gpio::{
bank0::{Gpio20, Gpio22},
FunctionClock, Pin,
},
pll::{Locked, PhaseLockedLoop},
rosc::{Enabled, RingOscillator},
typelevel::Sealed,
xosc::{CrystalOscillator, Stable},
};
use pac::{PLL_SYS, PLL_USB};
pub(crate) type PllSys = PhaseLockedLoop<Locked, PLL_SYS>;
impl Sealed for PllSys {}
impl ClockSource for PllSys {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
pub(crate) type PllUsb = PhaseLockedLoop<Locked, PLL_USB>;
impl Sealed for PllUsb {}
impl ClockSource for PllUsb {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
impl ClockSource for UsbClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for AdcClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for RtcClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for SystemClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
impl ClockSource for ReferenceClock {
fn get_freq(&self) -> Hertz {
self.frequency
}
}
pub(crate) type Xosc = CrystalOscillator<Stable>;
impl Sealed for Xosc {}
impl ClockSource for Xosc {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
pub(crate) type Rosc = RingOscillator<Enabled>;
impl Sealed for Rosc {}
// We are assuming the second output is never phase shifted (see 2.17.4)
impl ClockSource for RingOscillator<Enabled> {
fn get_freq(&self) -> Hertz {
self.operating_frequency()
}
}
// GPIN0
pub(crate) type GPin0 = Pin<Gpio20, FunctionClock>;
impl ClockSource for GPin0 {
fn get_freq(&self) -> Hertz {
todo!()
}
}
// GPIN1
pub(crate) type GPin1 = Pin<Gpio22, FunctionClock>;
impl ClockSource for Pin<Gpio22, FunctionClock> {
fn get_freq(&self) -> Hertz {
todo!()
}
}

View file

@ -1,3 +1,62 @@
macro_rules! clocks {
(
$(
$(#[$attr:meta])*
struct $name:ident {
init_freq: $init_freq:expr,
reg: $reg:ident,
$(src: {$($src:ident: $src_variant:ident),*},)?
auxsrc: {$($auxsrc:ident: $aux_variant:ident),*}
$(, div: $div:tt)?
}
)*
) => {
$crate::paste::paste!{
/// Abstraction layer providing Clock Management.
pub struct ClocksManager {
clocks: CLOCKS,
$(
#[doc = "`" $name "` field"]
pub [<$name:snake>]: $name,
)*
}
impl ClocksManager {
/// Exchanges CLOCKS block against Self.
pub fn new(mut clocks_block: CLOCKS) -> Self {
// Disable resus that may be enabled from previous software
clocks_block.clk_sys_resus_ctrl.write_with_zero(|w| w);
let shared_clocks = ShareableClocks::new(&mut clocks_block);
ClocksManager {
clocks: clocks_block,
$(
[<$name:snake>]: $name {
shared_dev: shared_clocks,
frequency: $init_freq.Hz(),
},
)*
}
}
}
}
$(
clock!(
$(#[$attr])*
struct $name {
reg: $reg,
$(src: {$($src: $src_variant),*},)?
auxsrc: {$($auxsrc: $aux_variant),*}
$(, div: $div )?
}
);
)*
};
}
macro_rules! clock {
{
$(#[$attr:meta])*
@ -16,8 +75,6 @@ macro_rules! clock {
$crate::paste::paste!{
$(impl ValidSrc<$name> for $src {
type Variant = [<$reg:camel SrcType>];
fn is_aux(&self) -> bool{
false
}
@ -29,7 +86,7 @@ macro_rules! clock {
impl GlitchlessClock for $name {
type Clock = Self;
fn await_select(&self, clock_token: &ChangingClockToken<Self>) -> nb::Result<(),()> {
fn await_select(&self, clock_token: &ChangingClockToken<Self>) -> nb::Result<(), Infallible> {
let shared_dev = unsafe { self.shared_dev.get() };
let selected = shared_dev.[<$reg _selected>].read().bits();
@ -41,11 +98,11 @@ macro_rules! clock {
}
}
/// Holds register value for ClockSource for this clock
#[doc = "Holds register value for ClockSource for `"$name"`"]
pub enum [<$reg:camel SrcType>] {
/// Its an clock source that is to be used as source
#[doc = "Contains a valid clock source register value that is to be used to set a clock as glitchless source for `"$name"`"]
Src(pac::clocks::[<$reg _ctrl>]::SRC_A),
/// Its an clock source that is to be used as aux source
#[doc = "Contains a valid clock source register value that is to be used to set a clock as aux source for `"$name"`"]
Aux(pac::clocks::[<$reg _ctrl>]::AUXSRC_A)
}
@ -69,22 +126,24 @@ macro_rules! clock {
Self::Src(_) => panic!(),
Self::Aux(v) => *v
}
}
}
}
impl $name {
/// WIP - Helper function to reset source (blocking)
pub fn reset_source_await(&mut self) -> nb::Result<(), ()> {
/// Reset clock back to its reset source
pub fn reset_source_await(&mut self) -> nb::Result<(), Infallible> {
let shared_dev = unsafe { self.shared_dev.get() };
shared_dev.[<$reg _ctrl>].modify(|_,w| {
shared_dev.[<$reg _ctrl>].modify(|_, w| {
w.src().variant(self.get_default_clock_source())
});
self.frequency = 12_000_000.Hz(); //TODO Get actual clock source.. Most likely 12 MHz though
self.await_select(&ChangingClockToken{clock_nr:0, clock: PhantomData::<Self>})
}
fn set_src<S:ClockSource + ValidSrc<$name, Variant=[<$reg:camel SrcType>]>>(&mut self, src: &S)-> ChangingClockToken<$name> {
fn set_src<S: ValidSrc<$name>>(&mut self, src: &S)-> ChangingClockToken<$name> {
let shared_dev = unsafe { self.shared_dev.get() };
shared_dev.[<$reg _ctrl>].modify(|_,w| {
@ -107,17 +166,31 @@ macro_rules! clock {
clock_nr: pac::clocks::clk_ref_ctrl::SRC_A::CLKSRC_CLK_REF_AUX as u8,
}
}
}
/// Configure this clock based on a clock source and desired frequency
pub fn configure_clock<S:ClockSource + ValidSrc<$name, Variant=[<$reg:camel SrcType>]>>(&mut self, src: &S, freq: Hertz) -> bool{
let src_freq: Hertz = src.get_freq();
impl Clock for $name {
type Variant = [<$reg:camel SrcType>];
if freq .gt(& src_freq){
return false;
#[doc = "Get operating frequency for `"$name"`"]
fn freq(&self) -> Hertz {
self.frequency
}
#[doc = "Configure `"$name"`"]
fn configure_clock<S: ValidSrc<$name>>(&mut self, src: &S, freq: Hertz) -> Result<(), ClockError>{
let src_freq: Hertz<u64> = src.get_freq().into();
if freq.gt(&src_freq){
return Err(ClockError::CantIncreaseFreq);
}
// Div register is 24.8) int.frac divider so multiply by 2^8 (left shift by 8)
let div = make_div(src_freq, freq).unwrap();
let shifted_src_freq = src_freq * (1 << 8);
let div = if freq.eq(&src_freq) {
1 << 8
} else {
*(shifted_src_freq / *freq.integer() as u64).integer() as u32
};
// If increasing divisor, set divisor before source. Otherwise set source
// before divisor. This avoids a momentary overspeed when e.g. switching
@ -148,9 +221,10 @@ macro_rules! clock {
self.set_div(div);
// Store the configured frequency
self.frequency = src_freq / div;
// div contains both the integer part and the fractional part so we need to shift the src_freq equally
self.frequency = (shifted_src_freq / div as u64).try_into().map_err(|_| ClockError::FrequencyToHigh)?;
true
Ok(())
}
}
}
@ -168,7 +242,7 @@ macro_rules! clock {
($name, $reg, auxsrc={$($auxsrc: $variant),*})
}
// Just to match proper divisable clocks so we don't have to do something special in configure function
// Just to match proper divisible clocks so we don't have to do something special in configure function
impl ClockDivision for $name {
fn set_div(&mut self, _: u32) {}
fn get_div(&self) -> u32 {1}
@ -214,9 +288,9 @@ macro_rules! divisable_clock {
macro_rules! stoppable_clock {
($name:ident, $reg:ident) => {
$crate::paste::paste!{
/// Holds register value for ClockSource for this clock
#[doc = "Holds register value for ClockSource for `"$name"`"]
pub enum [<$reg:camel SrcType>] {
/// Its an clock source that is to be used as aux source
#[doc = "Contains a valid clock source register value that is to be used to set a clock as aux source for `"$name"`"]
Aux(pac::clocks::[<$reg _ctrl>]::AUXSRC_A)
}
@ -229,18 +303,21 @@ macro_rules! stoppable_clock {
}
impl StoppableClock for $name {
/// Enable the clock
fn enable(&mut self) {
unsafe { self.shared_dev.get() }.[<$reg _ctrl>].modify(|_, w| {
w.enable().set_bit()
});
}
/// Disable the clock cleanly
fn disable(&mut self) {
unsafe { self.shared_dev.get() }.[<$reg _ctrl>].modify(|_, w| {
w.enable().clear_bit()
});
}
/// Disable the clock asynchronously
fn kill(&mut self) {
unsafe { self.shared_dev.get() }.[<$reg _ctrl>].modify(|_, w| {
w.kill().set_bit()
@ -248,17 +325,29 @@ macro_rules! stoppable_clock {
}
}
impl $name {
/// Configure this clock based on a clock source and desired frequency
pub fn configure_clock<S:ClockSource + ValidSrc<$name, Variant=[<$reg:camel SrcType>]>>(&mut self, src: &S, freq: Hertz) -> bool{
let src_freq: Hertz = src.get_freq();
impl Clock for $name {
type Variant = [<$reg:camel SrcType>];
if freq .gt(& src_freq){
return false;
#[doc = "Get operating frequency for `"$name"`"]
fn freq(&self) -> Hertz {
self.frequency
}
#[doc = "Configure `"$name"`"]
fn configure_clock<S: ValidSrc<$name>>(&mut self, src: &S, freq: Hertz) -> Result<(), ClockError>{
let src_freq: Hertz<u64> = src.get_freq().into();
if freq.gt(&src_freq){
return Err(ClockError::CantIncreaseFreq);
}
// Div register is 24.8) int.frac divider so multiply by 2^8 (left shift by 8)
let div = make_div(src_freq, freq).unwrap();
let shifted_src_freq = src_freq * (1 << 8);
let div = if freq.eq(&src_freq) {
1 << 8
} else {
*(shifted_src_freq / *freq.integer() as u64).integer() as u32
};
// If increasing divisor, set divisor before source. Otherwise set source
// before divisor. This avoids a momentary overspeed when e.g. switching
@ -278,9 +367,9 @@ macro_rules! stoppable_clock {
// Delay for 3 cycles of the target clock, for ENABLE propagation.
// Note XOSC_COUNT is not helpful here because XOSC is not
// necessarily running, nor is timer... so, 3 cycles per loop:
let sys_freq = 125_000_000.Hz(); // TODO
let delay_cyc = sys_freq.div( *self.frequency.integer() ) + 1u32.Hz();
cortex_m::asm::delay(*delay_cyc.integer());
let sys_freq = 125_000_000; // TODO get actual sys_clk frequency
let delay_cyc = sys_freq / *self.frequency.integer() + 1u32;
cortex_m::asm::delay(delay_cyc);
}
// Set aux mux first, and then glitchless mux if this self has one
@ -295,8 +384,9 @@ macro_rules! stoppable_clock {
self.set_div(div);
// Store the configured frequency
self.frequency = src_freq / div;
true
self.frequency = (shifted_src_freq / div as u64).try_into().map_err(|_| ClockError::FrequencyToHigh)?;
Ok(())
}
}
}
@ -311,7 +401,6 @@ macro_rules! base_clock {
$crate::paste::paste!{
$(impl ValidSrc<$name> for $auxsrc {
type Variant = [<$reg:camel SrcType>];
fn is_aux(&self) -> bool{
true
@ -321,18 +410,6 @@ macro_rules! base_clock {
}
})*
impl ClocksManager {
#[ doc = "Getter for the" $name ]
pub fn [<$name:snake>](&self) -> $name {
//TODO: Init clock here
$name {
shared_dev: self.shared_clocks,
frequency: 0.Hz(),
}
}
}
$(#[$attr])*
pub struct $name {
shared_dev: ShareableClocks,
@ -340,12 +417,7 @@ macro_rules! base_clock {
}
impl $name {
/// Returns the frequency of the configured clock
pub fn freq(&self) -> Hertz {
self.frequency
}
fn set_aux<S:ClockSource + ValidSrc<$name, Variant=[<$reg:camel SrcType>]>>(&mut self, src: &S) {
fn set_aux<S: ValidSrc<$name>>(&mut self, src: &S) {
let shared_dev = unsafe { self.shared_dev.get() };
shared_dev.[<$reg _ctrl>].modify(|_,w| {

View file

@ -2,63 +2,78 @@
//!
//!
//!
//! Usage:
//! ## Usage simple
//! ```rust
//! let mut p = rp2040_pac::Peripherals::take().unwrap();
//! let mut watchdog = Watchdog::new(p.WATCHDOG);
//! const XOSC_CRYSTAL_FREQ: u32 = 12_000_000; // Typically found in BSP crates
//! let mut clocks = init_clocks_and_plls(XOSC_CRYSTAL_FREQ, p.XOSC, p.CLOCKS, p.PLL_SYS, p.PLL_USB, &mut p.RESETS, &mut watchdog).ok().unwrap();
//! ```
//!
//! ## Usage extended
//! ```rust
//! let mut p = rp2040_pac::Peripherals::take().unwrap();
//! let mut watchdog = Watchdog::new(p.WATCHDOG);
//! let mut clocks = ClocksManager::new(p.CLOCKS, &mut watchdog);
//! // Enable the xosc
//! let xosc = setup_xosc_blocking(p.XOSC, XOSC_MHZ.Hz()).ok().unwrap();
//! const XOSC_CRYSTAL_FREQ: u32 = 12_000_000; // Typically found in BSP crates
//! let xosc = setup_xosc_blocking(p.XOSC, XOSC_CRYSTAL_FREQ.Hz()).map_err(InitError::XoscErr)?;
//!
//! // Configure PLLs
//! // REF FBDIV VCO POSTDIV
//! // PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHZ / 6 / 2 = 125MHz
//! // PLL USB: 12 / 1 = 12MHz * 40 = 480 MHz / 5 / 2 = 48MHz
//! let pll_sys = setup_pll_blocking(p.PLL_SYS, 12.MHz().into(), PLL_SYS_125MHZ, &mut clocks, &mut p.RESETS).ok().unwrap();
//! let pll_usb = setup_pll_blocking(p.PLL_USB, 12.MHz().into(), PLL_USB_48MHZ, &mut clocks, &mut p.RESETS).ok().unwrap();
//! let pll_sys = setup_pll_blocking(p.PLL_SYS, xosc.into(), PLL_SYS_125MHZ, &mut clocks, &mut p.RESETS).map_err(InitError::PllError)?;
//! let pll_usb = setup_pll_blocking(p.PLL_USB, xosc.into(), PLL_USB_48MHZ, &mut clocks, &mut p.RESETS).map_err(InitError::PllError)?;
//!
//! // Configure clocks
//! // CLK_REF = XOSC (12MHz) / 1 = 12MHz
//! let mut ref_clock = clocks.reference_clock();
//! ref_clock.configure_clock(&xosc, xosc.get_freq());
//! self.reference_clock.configure_clock(xosc, xosc.get_freq()).map_err(InitError::ClockError)?;
//!
//! // CLK SYS = PLL SYS (125MHz) / 1 = 125MHz
//! let mut sys_clock = clocks.system_clock();
//! sys_clock.configure_clock(&pll_sys, pll_sys.get_freq());
//! self.system_clock.configure_clock(pll_sys, pll_sys.get_freq()).map_err(InitError::ClockError)?;
//!
//! // CLK USB = PLL USB (48MHz) / 1 = 48MHz
//! let mut usb_clock = clocks.usb_clock();
//! usb_clock.configure_clock(&pll_usb, pll_usb.get_freq());
//! self.usb_clock.configure_clock(pll_usb, pll_usb.get_freq()).map_err(InitError::ClockError)?;
//!
//! // CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
//! let mut adc_clock = clocks.adc_clock();
//! adc_clock.configure_clock(&pll_usb, pll_usb.get_freq());
//! self.adc_clock.configure_clock(pll_usb, pll_usb.get_freq()).map_err(InitError::ClockError)?;
//!
//! // CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
//! let mut rtc_clock = clocks.rtc_clock();
//! rtc_clock.configure_clock(&pll_usb, 46875u32.Hz());
//! self.rtc_clock.configure_clock(pll_usb, 46875u32.Hz()).map_err(InitError::ClockError)?;
//!
//! // CLK PERI = clk_sys. Used as reference clock for Peripherals. No dividers so just select and enable
//! // Normally choose clk_sys or clk_usb
//! let mut peripheral_clock = clocks.peripheral_clock();
//! peripheral_clock.configure_clock(&sys_clock, sys_clock.freq());
//! self.peripheral_clock.configure_clock(&self.system_clock, self.system_clock.freq()).map_err(InitError::ClockError)?;
//!
//! ```
//!
//! See [Chapter 2 Section 15](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
use crate::{
clocks::available_clocks::ClockSource,
pll::{Locked, PhaseLockedLoop},
pll::{
common_configs::{PLL_SYS_125MHZ, PLL_USB_48MHZ},
setup_pll_blocking, Error as PllError, Locked, PhaseLockedLoop,
},
typelevel::Sealed,
watchdog::Watchdog,
xosc::{CrystalOscillator, Stable},
xosc::{setup_xosc_blocking, CrystalOscillator, Error as XoscError, Stable},
};
use core::{
convert::{Infallible, TryInto},
marker::PhantomData,
};
use embedded_time::rate::*;
use pac::{CLOCKS, PLL_SYS, PLL_USB};
use pac::{CLOCKS, PLL_SYS, PLL_USB, RESETS, XOSC};
#[macro_use]
mod macros;
pub mod available_clocks;
mod clock_sources;
use clock_sources::PllSys;
use self::clock_sources::{GPin0, GPin1, PllUsb, Rosc, Xosc};
#[derive(Copy, Clone)]
/// Provides refs to the CLOCKS block.
struct ShareableClocks {
@ -75,61 +90,202 @@ impl ShareableClocks {
}
}
const XOSC_MHZ: u32 = 12_000_000_u32;
/// Abstraction layer providing Clock Management.
pub struct ClocksManager {
clocks: CLOCKS,
shared_clocks: ShareableClocks,
/// Something when wrong setting up the clock
pub enum ClockError {
/// The frequency desired is higher than the source frequency
CantIncreaseFreq,
/// The desired frequency is to high (would overflow an u32)
FrequencyToHigh,
}
impl ClocksManager {
/// Exchanges CLOCKS block against Self.
pub fn new(mut clocks_block: CLOCKS, watchdog: &mut Watchdog) -> Self {
// Start tick in watchdog
watchdog.enable_tick_generation(XOSC_MHZ as u8);
// Disable resus that may be enabled from previous software
clocks_block.clk_sys_resus_ctrl.write_with_zero(|w| w);
/// For clocks
pub trait Clock: Sealed + Sized {
/// Enum with valid source clocks register values for `Clock`
type Variant;
let shared_clocks = ShareableClocks::new(&mut clocks_block);
ClocksManager {
clocks: clocks_block,
shared_clocks,
}
/// Get operating frequency
fn freq(&self) -> Hertz;
/// Configure this clock based on a clock source and desired frequency
fn configure_clock<S: ValidSrc<Self>>(
&mut self,
src: &S,
freq: Hertz,
) -> Result<(), ClockError>;
}
/// For clocks with a divider
trait ClockDivision {
/// Set integer divider value.
fn set_div(&mut self, div: u32);
/// Get integer diveder value.
fn get_div(&self) -> u32;
}
/// Clock with glitchless source
trait GlitchlessClock {
/// Self type to hand to ChangingClockToken
type Clock: Clock;
/// Await switching clock sources without glitches. Needs a token that is returned when setting
fn await_select(
&self,
clock_token: &ChangingClockToken<Self::Clock>,
) -> nb::Result<(), Infallible>;
}
/// Token which can be used to await the glitchless switch
pub struct ChangingClockToken<G: Clock> {
clock_nr: u8,
clock: PhantomData<G>,
}
/// For clocks that can be disabled
pub trait StoppableClock {
/// Enables the clock.
fn enable(&mut self);
/// Disables the clock.
fn disable(&mut self);
/// Kills the clock.
fn kill(&mut self);
}
/// Trait for things that can be used as clock source
pub trait ClockSource: Sealed {
/// Get the operating frequency for this source
///
/// Used to determine the divisor
fn get_freq(&self) -> Hertz;
}
/// Trait to contrain which ClockSource is valid for which Clock
pub trait ValidSrc<C: Clock>: Sealed + ClockSource {
/// Is this a ClockSource for src or aux?
fn is_aux(&self) -> bool;
/// Get register value for this ClockSource
fn variant(&self) -> C::Variant;
}
clocks! {
/// GPIO Output 0 Clock
struct GpioOutput0Clock {
init_freq: 0,
reg: clk_gpout0,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
/// GPIO Output 1 Clock
struct GpioOutput1Clock {
init_freq: 0,
reg: clk_gpout1,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
/// GPIO Output 2 Clock
struct GpioOutput2Clock {
init_freq: 0,
reg: clk_gpout2,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
/// GPIO Output 3 Clock
struct GpioOutput3Clock {
init_freq: 0,
reg: clk_gpout3,
auxsrc: {PllSys:CLKSRC_PLL_SYS, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC, SystemClock: CLK_SYS, UsbClock: CLK_USB, AdcClock: CLK_ADC, RtcClock: CLK_RTC, ReferenceClock:CLK_REF}
}
/// Reference Clock
struct ReferenceClock {
init_freq: 12_000_000, // Starts from ROSC which actually varies with input voltage etc, but 12 MHz seems to be a good value
reg: clk_ref,
src: {Rosc: ROSC_CLKSRC_PH, Xosc:XOSC_CLKSRC},
auxsrc: {PllUsb:CLKSRC_PLL_USB, GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
/// System Clock
struct SystemClock {
init_freq: 12_000_000, // ref_clk is 12 MHz
reg: clk_sys,
src: {ReferenceClock: CLK_REF},
auxsrc: {PllSys: CLKSRC_PLL_SYS, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
/// Peripheral Clock
struct PeripheralClock {
init_freq: 12_000_000, // sys_clk is 12 MHz
reg: clk_peri,
auxsrc: {SystemClock: CLK_SYS, PllSys: CLKSRC_PLL_SYS, PllUsb:CLKSRC_PLL_USB, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1 },
div: false
}
/// USB Clock
struct UsbClock {
init_freq: 0,
reg: clk_usb,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
/// Adc Clock
struct AdcClock {
init_freq: 0,
reg: clk_adc,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
/// RTC Clock
struct RtcClock {
init_freq: 0,
reg: clk_rtc,
auxsrc: {PllUsb:CLKSRC_PLL_USB,PllSys: CLKSRC_PLL_SYS, Rosc: ROSC_CLKSRC_PH, Xosc: XOSC_CLKSRC,GPin0:CLKSRC_GPIN0, GPin1:CLKSRC_GPIN1}
}
}
impl SystemClock {
fn get_default_clock_source(&self) -> pac::clocks::clk_sys_ctrl::SRC_A {
pac::clocks::clk_sys_ctrl::SRC_A::CLK_REF
}
fn get_aux_source(&self) -> pac::clocks::clk_sys_ctrl::SRC_A {
pac::clocks::clk_sys_ctrl::SRC_A::CLKSRC_CLK_SYS_AUX
}
}
impl ReferenceClock {
fn get_default_clock_source(&self) -> pac::clocks::clk_ref_ctrl::SRC_A {
pac::clocks::clk_ref_ctrl::SRC_A::ROSC_CLKSRC_PH
}
fn get_aux_source(&self) -> pac::clocks::clk_ref_ctrl::SRC_A {
pac::clocks::clk_ref_ctrl::SRC_A::CLKSRC_CLK_REF_AUX
}
}
impl ClocksManager {
/// Initialize the clocks to a sane default
pub fn init_default(
&self,
&mut self,
xosc: &CrystalOscillator<Stable>,
pll_sys: &PhaseLockedLoop<Locked, PLL_SYS>,
pll_usb: &PhaseLockedLoop<Locked, PLL_USB>,
) {
) -> Result<(), ClockError> {
// Configure clocks
// CLK_REF = XOSC (12MHz) / 1 = 12MHz
let mut ref_clock = self.reference_clock();
ref_clock.configure_clock(xosc, xosc.get_freq());
self.reference_clock
.configure_clock(xosc, xosc.get_freq())?;
// CLK SYS = PLL SYS (125MHz) / 1 = 125MHz
let mut sys_clock = self.system_clock();
sys_clock.configure_clock(pll_sys, pll_sys.get_freq());
self.system_clock
.configure_clock(pll_sys, pll_sys.get_freq())?;
// CLK USB = PLL USB (48MHz) / 1 = 48MHz
let mut usb_clock = self.usb_clock();
usb_clock.configure_clock(pll_usb, pll_usb.get_freq());
self.usb_clock
.configure_clock(pll_usb, pll_usb.get_freq())?;
// CLK ADC = PLL USB (48MHZ) / 1 = 48MHz
let mut adc_clock = self.adc_clock();
adc_clock.configure_clock(pll_usb, pll_usb.get_freq());
self.adc_clock
.configure_clock(pll_usb, pll_usb.get_freq())?;
// CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz
let mut rtc_clock = self.rtc_clock();
rtc_clock.configure_clock(pll_usb, 46875u32.Hz());
self.rtc_clock.configure_clock(pll_usb, 46875u32.Hz())?;
// CLK PERI = clk_sys. Used as reference clock for Peripherals. No dividers so just select and enable
// Normally choose clk_sys or clk_usb
let mut peripheral_clock = self.peripheral_clock();
peripheral_clock.configure_clock(&sys_clock, sys_clock.freq());
self.peripheral_clock
.configure_clock(&self.system_clock, self.system_clock.freq())
}
/// Releases the CLOCKS block
@ -137,3 +293,53 @@ impl ClocksManager {
self.clocks
}
}
/// Possible init errors
pub enum InitError {
/// Something went wrong setting up the Xosc
XoscErr(XoscError),
/// Something went wrong setting up the Pll
PllError(PllError),
/// Something went wrong setting up the Clocks
ClockError(ClockError),
}
/// Initialize the clocks and plls according to the reference implementation
pub fn init_clocks_and_plls(
xosc_crystal_freq: u32,
xosc_dev: XOSC,
clocks_dev: CLOCKS,
pll_sys_dev: PLL_SYS,
pll_usb_dev: PLL_USB,
resets: &mut RESETS,
watchdog: &mut Watchdog,
) -> Result<ClocksManager, InitError> {
let xosc = setup_xosc_blocking(xosc_dev, xosc_crystal_freq.Hz()).map_err(InitError::XoscErr)?;
// Start tick in watchdog
watchdog.enable_tick_generation(xosc_crystal_freq as u8);
let mut clocks = ClocksManager::new(clocks_dev);
let pll_sys = setup_pll_blocking(
pll_sys_dev,
xosc.operating_frequency().into(),
PLL_SYS_125MHZ,
&mut clocks,
resets,
)
.map_err(InitError::PllError)?;
let pll_usb = setup_pll_blocking(
pll_usb_dev,
xosc.operating_frequency().into(),
PLL_USB_48MHZ,
&mut clocks,
resets,
)
.map_err(InitError::PllError)?;
clocks
.init_default(&xosc, &pll_sys, &pll_usb)
.map_err(InitError::ClockError)?;
Ok(clocks)
}

View file

@ -296,11 +296,9 @@ where
R: Into<Hertz<u64>>,
{
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
let mut sys_clock = clocks.system_clock();
nb::block!(sys_clock.reset_source_await()).unwrap();
nb::block!(clocks.system_clock.reset_source_await()).unwrap();
let mut ref_clock = clocks.reference_clock();
nb::block!(ref_clock.reset_source_await()).unwrap();
nb::block!(clocks.reference_clock.reset_source_await()).unwrap();
let initialized_pll = PhaseLockedLoop::new(dev, xosc_frequency, config)?.initialize(resets);

View file

@ -249,10 +249,10 @@ pwm! {
Pwm0: (pwm0, "pwm0", [0, 1, 16, 18], 0),
Pwm1: (pwm1, "pwm1", [2, 3, 18, 19], 1),
Pwm2: (pwm2, "pwm2", [4, 5, 20, 21], 2),
Pwm3: (pwm3, "pwm3", [6, 7, 22], 3),
Pwm4: (pwm4, "pwm4", [8, 9], 4),
Pwm3: (pwm3, "pwm3", [6, 7, 22, 23], 3),
Pwm4: (pwm4, "pwm4", [8, 9, 24, 25], 4),
Pwm5: (pwm5, "pwm5", [10, 11, 26, 27], 5),
Pwm6: (pwm6, "pwm6", [12, 13, 28], 6),
Pwm6: (pwm6, "pwm6", [12, 13, 28, 29], 6),
Pwm7: (pwm7, "pwm7", [14, 15], 7),
]
}