//! # ADC Example //! //! This application demonstrates how to read ADC samples from the temperature //! sensor and pin and output them to the UART on pins 1 and 2 at 9600 baud. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and licence details. #![no_std] #![no_main] // The macro for our start-up function use cortex_m_rt::entry; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // An ADC trait we need use embedded_hal::adc::OneShot; // A debug/string formatting trait we need use core::fmt::Write; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // The linker will place this boot block at the start of our program image. We // need this to help the ROM bootloader get our code up and running. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Run RP2040 at 125 MHz const SYS_FREQ_HZ: u32 = hal::pll::common_configs::PLL_SYS_125MHZ.vco_freq.0; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then prints the temperature /// in an infinite loop. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, SYS_FREQ_HZ); // The single-cycle I/O block controls our GPIO pins let sio = hal::sio::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Create a UART driver let mut uart = hal::uart::UartPeripheral::<_, _>::enable( pac.UART0, &mut pac.RESETS, hal::uart::common_configs::_9600_8_N_1, clocks.peripheral_clock.into(), ) .unwrap(); // UART TX (characters sent from pico) on pin 1 (GPIO0) and RX (on pin 2 (GPIO1) let _tx_pin = pins.gpio0.into_mode::(); let _rx_pin = pins.gpio1.into_mode::(); // Write to the UART uart.write_full_blocking(b"ADC example\r\n"); // Enable ADC let mut adc = hal::adc::Adc::new(pac.ADC, &mut pac.RESETS); // Enable the temperature sense channel let mut temperature_sensor = adc.enable_temp_sensor(); // Configure GPIO26 as an ADC input let mut adc_pin_0 = pins.gpio26.into_floating_input(); loop { // Read the raw ADC counts from the temperature sensor channel. let temp_sens_adc_counts: u16 = adc.read(&mut temperature_sensor).unwrap(); let pin_adc_counts: u16 = adc.read(&mut adc_pin_0).unwrap(); writeln!( uart, "ADC readings: Temperature: {:02} Pin: {:02}\r\n", temp_sens_adc_counts, pin_adc_counts ) .unwrap(); delay.delay_ms(1000); } } // End of file