//! # Pico PIO PWM Blink Example //! //! Fades the LED on a Pico board using the PIO peripheral with an pwm program. //! //! This will fade in the LED attached to GP25, which is the pin the Pico //! uses for the on-board LED. //! //! This example uses a few advance pio tricks such as side setting pins and instruction injection. //! //! See the `Cargo.toml` file for Copyright and license details. Except for the pio program which is subject to a different license. #![no_std] #![no_main] use defmt::info; use defmt_rtt as _; // The macro for our start-up function use rp_pico::entry; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Pull in any important traits use rp_pico::hal::prelude::*; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use rp_pico::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use rp_pico::hal; // Import pio crates use hal::pio::{PIOBuilder, Running, StateMachine, Tx, ValidStateMachine, SM0}; use pio::{InstructionOperands, OutDestination}; use pio_proc::pio_file; /// Set pio pwm period /// /// This uses a sneaky trick to set a second value besides the duty cycle. /// We first write a value to the tx fifo. But instead of the normal instructions we /// have stopped the state machine and inject our own instructions that move the written value to the ISR. fn pio_pwm_set_period( sm: StateMachine<(hal::pac::PIO0, SM0), Running>, tx: &mut Tx, period: u32, ) -> StateMachine<(hal::pac::PIO0, SM0), Running> { // To make sure the inserted instructions actually use our newly written value // We first busy loop to empty the queue. (Which typically should be the case) while !tx.is_empty() {} let mut sm = sm.stop(); tx.write(period); sm.exec_instruction( InstructionOperands::PULL { if_empty: false, block: false, } .encode(), ); sm.exec_instruction( InstructionOperands::OUT { destination: OutDestination::ISR, bit_count: 32, } .encode(), ); sm.start() } /// Set pio pwm duty cycle /// /// The value written to the TX FIFO is used directly by the normal pio program fn pio_pwm_set_level(tx: &mut Tx, level: u32) { // Write duty cycle to TX Fifo tx.write(level); } /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then fades the LED in an /// infinite loop. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( rp_pico::XOSC_CRYSTAL_FREQ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = rp_pico::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); let (mut pio0, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS); // Create a pio program let program = pio_file!("./examples/pwm.pio", select_program("pwm"),); let installed = pio0.install(&program.program).unwrap(); // Set gpio25 to pio let _led: hal::gpio::Pin<_, hal::gpio::FunctionPio0> = pins.led.into_mode(); let led_pin_id = 25; // Build the pio program and set pin both for set and side set! // We are running with the default divider which is 1 (max speed) let (mut sm, _, mut tx) = PIOBuilder::from_program(installed) .set_pins(led_pin_id, 1) .side_set_pin_base(led_pin_id) .build(sm0); // Set pio pindir for gpio25 sm.set_pindirs([(led_pin_id, hal::pio::PinDir::Output)]); // Start state machine let sm = sm.start(); // Set period pio_pwm_set_period(sm, &mut tx, u16::MAX as u32 - 1); // Loop forever and adjust duty cycle to make te led brighter let mut level = 0; loop { info!("Level = {}", level); pio_pwm_set_level(&mut tx, level * level); level = (level + 1) % 256; delay.delay_ms(10); } } // End of file