//! # Pico USB Serial (with Interrupts) Example //! //! Creates a USB Serial device on a Pico board, with the USB driver running in //! the USB interrupt. //! //! This will create a USB Serial device echoing anything it receives. Incoming //! ASCII characters are converted to upercase, so you can tell it is working //! and not just local-echo! //! //! See the `Cargo.toml` file for Copyright and licence details. #![no_std] #![no_main] // The macro for our start-up function use rp_pico::entry; // The macro for marking our interrupt functions use rp_pico::hal::pac::interrupt; // GPIO traits use embedded_hal::digital::v2::OutputPin; // Time handling traits use embedded_time::rate::*; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Pull in any important traits use rp_pico::hal::prelude::*; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use rp_pico::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use rp_pico::hal; // USB Device support use usb_device::{class_prelude::*, prelude::*}; // USB Communications Class Device support use usbd_serial::SerialPort; /// The USB Device Driver (shared with the interrupt). static mut USB_DEVICE: Option> = None; /// The USB Bus Driver (shared with the interrupt). static mut USB_BUS: Option> = None; /// The USB Serial Device Driver (shared with the interrupt). static mut USB_SERIAL: Option> = None; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then blinks the LED in an /// infinite loop. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( rp_pico::XOSC_CRYSTAL_FREQ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // Set up the USB driver let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new( pac.USBCTRL_REGS, pac.USBCTRL_DPRAM, clocks.usb_clock, true, &mut pac.RESETS, )); unsafe { // Note (safety): This is safe as interrupts haven't been started yet USB_BUS = Some(usb_bus); } // Grab a reference to the USB Bus allocator. We are promising to the // compiler not to take mutable access to this global variable whilst this // reference exists! let bus_ref = unsafe { USB_BUS.as_ref().unwrap() }; // Set up the USB Communications Class Device driver let serial = SerialPort::new(bus_ref); unsafe { USB_SERIAL = Some(serial); } // Create a USB device with a fake VID and PID let usb_dev = UsbDeviceBuilder::new(bus_ref, UsbVidPid(0x16c0, 0x27dd)) .manufacturer("Fake company") .product("Serial port") .serial_number("TEST") .device_class(2) // from: https://www.usb.org/defined-class-codes .build(); unsafe { // Note (safety): This is safe as interrupts haven't been started yet USB_DEVICE = Some(usb_dev); } // Enable the USB interrupt unsafe { pac::NVIC::unmask(hal::pac::Interrupt::USBCTRL_IRQ); }; // No more USB code after this point in main! We can do anything we want in // here since USB is handled in the interrupt - let's blink an LED! // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = rp_pico::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // Set the LED to be an output let mut led_pin = pins.led.into_push_pull_output(); // Blink the LED at 1 Hz loop { led_pin.set_high().unwrap(); delay.delay_ms(500); led_pin.set_low().unwrap(); delay.delay_ms(500); } } /// This function is called whenever the USB Hardware generates an Interrupt /// Request. /// /// We do all our USB work under interrupt, so the main thread can continue on /// knowing nothing about USB. #[allow(non_snake_case)] #[interrupt] unsafe fn USBCTRL_IRQ() { use core::sync::atomic::{AtomicBool, Ordering}; /// Note whether we've already printed the "hello" message. static SAID_HELLO: AtomicBool = AtomicBool::new(false); // Grab the global objects. This is OK as we only access them under interrupt. let usb_dev = USB_DEVICE.as_mut().unwrap(); let serial = USB_SERIAL.as_mut().unwrap(); // Say hello exactly once on start-up if !SAID_HELLO.load(Ordering::Relaxed) { SAID_HELLO.store(true, Ordering::Relaxed); let _ = serial.write(b"Hello, World!\r\n"); } // Poll the USB driver with all of our supported USB Classes if usb_dev.poll(&mut [serial]) { let mut buf = [0u8; 64]; match serial.read(&mut buf) { Err(_e) => { // Do nothing } Ok(0) => { // Do nothing } Ok(count) => { // Convert to upper case buf.iter_mut().take(count).for_each(|b| { b.make_ascii_uppercase(); }); // Send back to the host let mut wr_ptr = &buf[..count]; while !wr_ptr.is_empty() { let _ = serial.write(wr_ptr).map(|len| { wr_ptr = &wr_ptr[len..]; }); } } } } } // End of file