//! Functions and data from the RPI Bootrom. const FUNC_TABLE: *const *const u16 = 0x14 as _; const DATA_TABLE: *const *const u16 = 0x16 as _; fn rom_table_lookup(table: *const *const u16, tag: [u8; 2]) -> T { let tag = u16::from_le_bytes(tag); unsafe { let mut entry = *table; loop { let entry_tag = entry.read(); if entry_tag == 0 { panic!("not found"); } entry = entry.add(1); let entry_addr = entry.read(); if entry_tag == tag { break core::mem::transmute_copy(&entry_addr); } entry = entry.add(1); } } } macro_rules! rom_funcs { ( $( $(#[$outer:meta])* $c:literal $name:ident ( $( $aname:ident : $aty:ty ),* ) -> $ret:ty ; )* ) => { $( $(#[$outer])* pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { rom_table_lookup(FUNC_TABLE, *$c) } )* } } rom_funcs! { /// Return a count of the number of 1 bits in value. b"P3" popcount32(value: u32) -> u32; /// Return the bits of value in the reverse order. b"R3" reverse32(value: u32) -> u32; /// Return the number of consecutive high order 0 bits of value. If value is zero, returns 32. b"L3" clz32(value: u32) -> u32; /// Return the number of consecutive low order 0 bits of value. If value is zero, returns 32. b"T3" ctz32(value: u32) -> u32; /// Sets n bytes start at ptr to the value c and returns ptr b"MS" memset(ptr: *mut u8, c: u8, n: u8) -> *mut u8; /// Sets n bytes start at ptr to the value c and returns ptr. Note this is a slightly more /// efficient variant of _memset that may only be used if ptr is word aligned. b"M4" memset4(ptr: *mut u32, c: u8, n: u32) -> *mut u32; /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the /// regions overlap. b"MC" memcpy(dest: *mut u8, src: *mut u8, n: u32) -> u8; /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the /// regions overlap. Note this is a slightly more efficient variant of _memcpy that may only be /// used if dest and src are word aligned. b"C4" memcpy44(dest: *mut u32, src: *mut u32, n: u32) -> *mut u8; /// Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads. b"IF" connect_internal_flash() -> (); /// First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence. /// Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be /// cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This /// function configures the SSI with a fixed SCK clock divisor of /6. b"EX" flash_exit_xip() -> (); /// Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a /// block erase command e.g. D8h block erase, and the size of the block erased by this /// command — this function will use the larger block erase where possible, for much higher /// erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of /// 4096 bytes. b"RE" flash_range_erase(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> (); /// Program data to a range of flash addresses starting at addr (offset from the start of flash) /// and count bytesin size. addr must be aligned to a 256-byte boundary, and count must be a /// multiple of 256. b"RP" flash_range_program(addr: u32, data: *mut u8, count: usize) -> (); /// Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can /// drive the flashchip select as normal. b"FC" flash_flush_cache() -> (); /// Configure the SSI to generate a standard 03h serial read command, with 24 address bits, /// upon each XIP access. This is a very slow XIP configuration, but is very widely supported. /// The debugger calls this function after performing a flash erase/programming operation, so /// that the freshly-programmed code and data is visible to the debug host, without having to /// know exactly what kind of flash device is connected. b"CX" flash_enter_cmd_xip() -> (); /// Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode: /// * gpio_activity_pin_mask is provided to enable an 'activity light' via GPIO attached LED /// for the USB Mass Storage Device: /// * 0 No pins are used as per cold boot. /// * Otherwise a single bit set indicating which GPIO pin should be set to output and /// raised whenever there is mass storage activity from the host. /// * disable_interface_mask may be used to control the exposed USB interfaces: /// * 0 To enable both interfaces (as per cold boot). /// * 1 To disable the USB Mass Storage Interface. /// * 2 to Disable the USB PICOBOOT Interface. b"UB" reset_to_usb_boot(gpio_activity_pin_mask: u32, disable_interface_mask: u32) -> (); /// This is the method that is entered by core 1 on reset to wait to be launched by core 0. /// There are few cases where you should call this method (resetting core 1 is much better). /// This method does not return and should only ever be called on core 1. b"WV" wait_for_vector() -> !; } unsafe fn convert_str(s: *const u8) -> &'static str { let mut end = s; while *end != 0 { end = end.add(1); } let s = core::slice::from_raw_parts(s, end.offset_from(s) as usize); core::str::from_utf8_unchecked(s) } /// The Raspberry Pi Trading Ltd copyright string. pub fn copyright_string() -> &'static str { let s: *const u8 = rom_table_lookup(DATA_TABLE, *b"CR"); unsafe { convert_str(s) } } /// The 8 most significant hex digits of the Bootrom git revision. pub fn git_revision() -> &'static str { let s: *const u8 = rom_table_lookup(DATA_TABLE, *b"GR"); unsafe { convert_str(s) } } /// The start address of the floating point library code and data. This and fplib_end along with the individual /// function pointers in soft_float_table can be used to copy the floating point implementation into RAM if /// desired. pub fn fplib_start() -> *const u8 { rom_table_lookup(DATA_TABLE, *b"FS") } /// See Table 181 for the contents of this table. pub fn soft_float_table() -> *const u16 { rom_table_lookup(DATA_TABLE, *b"SF") } /// The end address of the floating point library code and data. pub fn fplib_end() -> *const u8 { rom_table_lookup(DATA_TABLE, *b"FE") } /// This entry is only present in the V2 bootrom. See Table 182 for the contents of this table. pub fn soft_double_table() -> *const u16 { rom_table_lookup(DATA_TABLE, *b"SD") } macro_rules! float_funcs { ( $( $(#[$outer:meta])* $offset:literal $name:ident ( $( $aname:ident : $aty:ty ),* ) -> $ret:ty; )* ) => { $( $(#[$outer])* pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { let table: *const *const u16 = rom_table_lookup(DATA_TABLE, *b"SF"); unsafe { core::mem::transmute_copy(&table.add($offset)) } } )* } } float_funcs! { /// Return a + b. 0x00 fadd(a: f32, b: f32) -> f32; /// Return a - b. 0x04 fsub(a: f32, b: f32) -> f32; /// Return a * b. 0x08 fmul(a: f32, b: f32) -> f32; /// Return a / b. 0x0c fdiv(a: f32, b: f32) -> f32; /// Return the square root of v or -INFINITY if v is negative. 0x18 fsqrt(v: f32) -> f32; /// Convert a float to a signed integer, rounding towards -INFINITY, and clamping the result /// to lie within the range -0x80000000 to 0x7FFFFFFF. 0x1c float_to_int(v: f32) -> i32; /// Convert a float to a signed fixed point integer reprsentation where n specifies the /// position of the binary point in the resulting fixed point representation. e.g. /// float_to_fix(0.5, 16) == 0x8000. This method rounds towards -INFINITY, and clamps /// the resulting integer to lie within the range -800000000 to 0x7FFFFFFF. 0x20 float_to_fix(v: f32, n: i32) -> i32; /// Convert a float to an unsigned integer, rounding towards -INFINITY, and clamping the result /// to lie within the range 0x00000000 to 0xFFFFFFFF 0x24 float_to_uint(v: f32) -> u32; /// Convert a float to an unsigned fixed point integer representation where n specifies the /// position of the binary point in the resulting fixed point representation, e.g. /// float_to_ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps the /// resulting integer to lie within the range 0x00000000 to 0xFFFFFFFF. 0x28 float_to_ufix(v: f32, n: i32) -> u32; /// Convert a signed integer to the nearest float value, rounding to even on tie. 0x2c int_to_float(v: i32) -> f32; /// Convert a signed fixed point integer representation to the nearest float value, rounding /// to even on tie. n specifies the position of the binary point in fixed point, so /// f = nearest(v/2^n). 0x30 fix_to_float(v: i32, n: i32) -> f32; /// Convert an unsigned integer to the nearest float value, rounding to even on tie. 0x34 uint_to_float(v: u32) -> f32; /// Convert a unsigned fixed point integer representation to the nearest float value, rounding /// to even on tie. n specifies the position of the binary point in fixed point, so /// f = nearest(v/2^n). 0x38 ufix_to_float(v: u32, n: i32) -> f32; /// Return the cosine of angle. angle is in radians, and must be in the range -128 to 128. 0x3c fcos(angle: f32) -> f32; /// Return the sine of angle. angle is in radians, and must be in the range -128 to 128. 0x40 fsin(angle: f32) -> f32; /// Return the tangent of angle. angle is in radians, and must be in the range -128 to 128. 0x44 ftan(angle: f32) -> f32; /// Return the exponential value of v, i.e. so e^v. 0x4c fexp(v: f32) -> f32; /// Return the natural logarithm of v. If v <= 0 return -Infinity. 0x50 fln(v: f32) -> f32; /// Compares two floating point numbers, returning: /// * 0 if a == b /// * -1 if a < b /// * 1 if a > b 0x54 fcmp(a: f32, b: f32) -> i32; /// Computes the arc tangent of y/x using the signs of arguments to determine the correct quadrant. 0x58 fatan2(y: f32, x: f32) -> f32; /// Convert a signed 64-bit integer to the nearest float value, rounding to even on tie. 0x5c int64_to_float(v: i64) -> f32; /// Convert a signed fixed point integer representation to the nearest float value, rounding /// to even on tie. n specifies the position of the binary point in fixed point, so /// f = nearest(v/2^n). 0x60 fix64_to_float(v: i64, n: i32) -> f32; /// Convert an unsigned 64-bit integer to the nearest float value, rounding to even on tie. 0x64 uint64_to_float(v: u64) -> f32; /// Convert an unsigned fixed point integer representation to the nearest float value, rounding /// to even on tie. n specifies the position of the binary point in fixed point, so /// f = nearest(v/2^n). 0x68 ufix64_to_float(v: u64, n: i32) -> f32; /// a 0x6c float_to_int64(v: f32) -> i64; /// a 0x70 float_to_fix64(v: f32, n: i32) -> f32; /// a 0x74 float_to_uint64(v: f32) -> u64; /// a 0x78 float_to_ufix64(v: f32, n: i32) -> u64; /// Converts a float to a double. 0x7c float_to_double(v: f32) -> f64; } macro_rules! double_funcs { ( $( $(#[$outer:meta])* $offset:literal $name:ident ( $( $aname:ident : $aty:ty ),* ) -> $ret:ty; )* ) => { $( $(#[$outer])* pub fn $name() -> extern "C" fn( $( $aname : $aty ),* ) -> $ret { let table: *const *const u16 = rom_table_lookup(DATA_TABLE, *b"SD"); unsafe { core::mem::transmute_copy(&table.add($offset)) } } )* } } double_funcs! { /// a 0x00 dadd(a: f64, b: f64) -> f64; /// a 0x04 dsub(a: f64, b: f64) -> f64; /// a 0x08 dmul(a: f64, b: f64) -> f64; /// a 0x0c ddiv(a: f64, b: f64) -> f64; /// a 0x18 dsqrt(v: f64) -> f64; /// a 0x1c double_to_int(v: f64) -> i32; /// a 0x20 double_to_fix(v: f64, n: i32) -> i32; /// a 0x24 double_to_uint(v: f64) -> u32; /// a 0x28 double_to_ufix(v: f64, n: i32) -> u32; /// a 0x2c int_to_double(v: i32) -> f64; /// a 0x30 fix_to_double(v: i32, n: i32) -> f64; /// a 0x34 uint_to_double(v: u32) -> f64; /// a 0x38 ufix_to_double(v: u32, n: i32) -> f64; /// a 0x3c dcos(angle: f64) -> f64; /// a 0x40 dsin(angle: f64) -> f64; /// a 0x44 dtan(angle: f64) -> f64; /// a 0x4c dexp(v: f64) -> f64; /// a 0x50 dln(v: f64) -> f64; /// a 0x54 dcmp(a: f64, b: f64) -> i32; /// a 0x58 datan2(y: f64, x: f64) -> f64; /// a 0x5c int64_to_double(v: i64) -> f64; /// a 0x60 fix64_to_doubl(v: i64, n: i32) -> f64; /// a 0x64 uint64_to_double(v: u64) -> f64; /// a 0x68 ufix64_to_double(v: u64, n: i32) -> f64; /// a 0x6c double_to_int64(v: f64) -> i64; /// a 0x70 double_to_fix64(v: f64, n: i32) -> i64; /// a 0x74 double_to_uint64(v: f64) -> u64; /// a 0x78 double_to_ufix64(v: f64, n: i32) -> u64; /// a 0x7c double_to_float(v: f64) -> f32; }