//! # DHT11 Example //! //! This application demonstrates how to read a DHT11 sensor on the RP2040. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! In this example, the DHT11 data pin should be connected to GPIO28. //! //! NOTE: The DHT11 driver only works reliably when compiled in release mode. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // The macro for our start-up function use cortex_m_rt::entry; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; // Some traits we need use embedded_hal::digital::v2::InputPin; use embedded_hal::digital::v2::OutputPin; use embedded_time::fixed_point::FixedPoint; use hal::gpio::dynpin::DynPin; use hal::Clock; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; use dht_sensor::{dht11, DhtReading}; /// A wrapper for DynPin, implementing both InputPin and OutputPin, to simulate /// an open-drain pin as needed by the wire protocol the DHT11 sensor speaks. /// https://how2electronics.com/interfacing-dht11-temperature-humidity-sensor-with-raspberry-pi-pico/ struct InOutPin { inner: DynPin, } impl InOutPin { fn new(inner: DynPin) -> Self { Self { inner } } } impl InputPin for InOutPin { type Error = rp2040_hal::gpio::Error; fn is_high(&self) -> Result::Error> { self.inner.is_high() } fn is_low(&self) -> Result::Error> { self.inner.is_low() } } impl OutputPin for InOutPin { type Error = rp2040_hal::gpio::Error; fn set_low(&mut self) -> Result<(), ::Error> { // To actively pull the pin low, it must also be configured as a (readable) output pin self.inner.into_readable_output(); // In theory, we should set the pin to low first, to make sure we never actively // pull it up. But if we try it on the input pin, we get Err(Gpio(InvalidPinType)). self.inner.set_low()?; Ok(()) } fn set_high(&mut self) -> Result<(), ::Error> { // To set the open-drain pin to high, just disable the output driver by changing the // pin to input mode with pull-up. That way, the DHT11 can still pull the data line down // to send its response. self.inner.into_pull_up_input(); Ok(()) } } /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, assigns GPIO 28 to the /// DHT11 driver, and takes a single measurement. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer()); // Use GPIO 28 as an InOutPin let mut pin = InOutPin::new(pins.gpio28.into()); pin.set_high().ok(); // Perform a sensor reading let _measurement = dht11::Reading::read(&mut delay, &mut pin); // In this case, we just ignore the result. A real application // would do something with the measurement. loop { cortex_m::asm::wfi(); } } // End of file