//! Single Cycle Input and Output (SIO) //! //! To be able to partition parts of the SIO block to other modules: //! //! ```no_run //! use rp2040_hal::{gpio::Pins, pac, sio::Sio}; //! //! let mut peripherals = pac::Peripherals::take().unwrap(); //! let sio = Sio::new(peripherals.SIO); //! ``` //! //! And then for example //! //! ```no_run //! # use rp2040_hal::{gpio::Pins, pac, sio::Sio}; //! # let mut peripherals = pac::Peripherals::take().unwrap(); //! # let sio = Sio::new(peripherals.SIO); //! let pins = Pins::new(peripherals.IO_BANK0, peripherals.PADS_BANK0, sio.gpio_bank0, &mut peripherals.RESETS); //! ``` use super::*; use core::convert::Infallible; /// Marker struct for ownership of SIO gpio bank0 pub struct SioGpioBank0 { _private: (), } /// Marker struct for ownership of SIO FIFO pub struct SioFifo { _private: (), } /// Marker struct for ownership of SIO gpio qspi pub struct SioGpioQspi { _private: (), } /// Marker struct for ownership of divide/modulo module pub struct HwDivider { _private: (), } /// Result of divide/modulo operation pub struct DivResult { /// The remainder of divide/modulo operation pub remainder: T, /// The quotient of divide/modulo operation pub quotient: T, } /// Struct containing ownership markers for managing ownership of the SIO registers. pub struct Sio { _sio: pac::SIO, /// GPIO Bank 0 registers pub gpio_bank0: SioGpioBank0, /// GPIO QSPI registers pub gpio_qspi: SioGpioQspi, /// 8-cycle hardware divide/modulo module pub hwdivider: HwDivider, /// Inter-core FIFO pub fifo: SioFifo, // we can hand out other things here, for example: // interp0 // interp1 } impl Sio { /// Create `Sio` from the PAC. pub fn new(sio: pac::SIO) -> Self { Self { _sio: sio, gpio_bank0: SioGpioBank0 { _private: () }, gpio_qspi: SioGpioQspi { _private: () }, fifo: SioFifo { _private: () }, hwdivider: HwDivider { _private: () }, } } } impl SioFifo { /// Check if the inter-core FIFO has valid data for reading. /// /// Returning `true` means there is valid data, `false` means it is empty /// and you must not read from it. pub fn is_read_ready(&mut self) -> bool { let sio = unsafe { &(*pac::SIO::ptr()) }; sio.fifo_st.read().vld().bit_is_set() } /// Check if the inter-core FIFO is ready to receive data. /// /// Returning `true` means there is room, `false` means it is full and you /// must not write to it. pub fn is_write_ready(&mut self) -> bool { let sio = unsafe { &(*pac::SIO::ptr()) }; sio.fifo_st.read().rdy().bit_is_set() } /// Return the FIFO status, as an integer. pub fn status(&self) -> u32 { let sio = unsafe { &(*pac::SIO::ptr()) }; sio.fifo_st.read().bits() } /// Write to the inter-core FIFO. /// /// You must ensure the FIFO has space by calling `is_write_ready` pub fn write(&mut self, value: u32) { let sio = unsafe { &(*pac::SIO::ptr()) }; sio.fifo_wr.write(|w| unsafe { w.bits(value) }); // Fire off an event to the other core. // This is required as the other core may be `wfe` (waiting for event) cortex_m::asm::sev(); } /// Read from the inter-core FIFO. /// /// Will return `Some(data)`, or `None` if the FIFO is empty. pub fn read(&mut self) -> Option { if self.is_read_ready() { let sio = unsafe { &(*pac::SIO::ptr()) }; Some(sio.fifo_rd.read().bits()) } else { None } } /// Read from the FIFO until it is empty, throwing the contents away. pub fn drain(&mut self) { while self.read().is_some() { // Retry until FIFO empty } } /// Push to the FIFO, spinning if there's no space. pub fn write_blocking(&mut self, value: u32) { // We busy-wait for the FIFO to have some space while !self.is_write_ready() { cortex_m::asm::nop(); } // Write the value to the FIFO - the other core will now be able to // pop it off its end of the FIFO. self.write(value as u32); // Fire off an event to the other core cortex_m::asm::sev(); } /// Pop from the FIFO, spinning if there's currently no data. pub fn read_blocking(&mut self) -> u32 { // Keep trying until FIFO has data loop { // Have we got something? if let Some(data) = self.read() { // Yes, return it right away return data; } else { // No, so sleep the CPU. We expect the sending core to `sev` // on write. cortex_m::asm::wfe(); } } } } fn save_divider(f: F) -> R where F: FnOnce(&pac::sio::RegisterBlock) -> R, { let sio = unsafe { &(*pac::SIO::ptr()) }; if !sio.div_csr.read().dirty().bit() { // Not dirty, so nothing is waiting for the calculation. So we can just // issue it directly without a save/restore. f(sio) } else { // Since we can't save the signed-ness of the calculation, we have to make // sure that there's at least an 8 cycle delay before we read the result. // The Pico SDK ensures this by using a 6 cycle push and two 1 cycle reads. // Since we can't be sure the Rust implementation will optimize to the same, // just use an explicit wait. while !sio.div_csr.read().ready().bit() {} // Read the quotient last, since that's what clears the dirty flag let dividend = sio.div_udividend.read().bits(); let divisor = sio.div_udivisor.read().bits(); let remainder = sio.div_remainder.read().bits(); let quotient = sio.div_quotient.read().bits(); // If we get interrupted here (before a write sets the DIRTY flag) its fine, since // we have the full state, so the interruptor doesn't have to restore it. Once the // write happens and the DIRTY flag is set, the interruptor becomes responsible for // restoring our state. let result = f(sio); // If we are interrupted here, then the interruptor will start an incorrect calculation // using a wrong divisor, but we'll restore the divisor and result ourselves correctly. // This sets DIRTY, so any interruptor will save the state. sio.div_udividend.write(|w| unsafe { w.bits(dividend) }); // If we are interrupted here, the the interruptor may start the calculation using // incorrectly signed inputs, but we'll restore the result ourselves. // This sets DIRTY, so any interruptor will save the state. sio.div_udivisor.write(|w| unsafe { w.bits(divisor) }); // If we are interrupted here, the interruptor will have restored everything but the // quotient may be wrongly signed. If the calculation started by the above writes is // still ongoing it is stopped, so it won't replace the result we're restoring. // DIRTY and READY set, but only DIRTY matters to make the interruptor save the state. sio.div_remainder.write(|w| unsafe { w.bits(remainder) }); // State fully restored after the quotient write. This sets both DIRTY and READY, so // whatever we may have interrupted can read the result. sio.div_quotient.write(|w| unsafe { w.bits(quotient) }); result } } // Don't use cortex_m::asm::delay(8) because that ends up delaying 15 cycles // on Cortex-M0. Each iteration of the inner loop is 3 cycles and it adds // one extra iteration. #[inline(always)] fn divider_delay() { cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); cortex_m::asm::nop(); } impl HwDivider { /// Perform hardware unsigned divide/modulo operation pub fn unsigned(&self, dividend: u32, divisor: u32) -> DivResult { save_divider(|sio| { sio.div_udividend.write(|w| unsafe { w.bits(dividend) }); sio.div_udivisor.write(|w| unsafe { w.bits(divisor) }); divider_delay(); // Note: quotient must be read last let remainder = sio.div_remainder.read().bits(); let quotient = sio.div_quotient.read().bits(); DivResult { remainder, quotient, } }) } /// Perform hardware signed divide/modulo operation pub fn signed(&self, dividend: i32, divisor: i32) -> DivResult { save_divider(|sio| { sio.div_sdividend .write(|w| unsafe { w.bits(dividend as u32) }); sio.div_sdivisor .write(|w| unsafe { w.bits(divisor as u32) }); divider_delay(); // Note: quotient must be read last let remainder = sio.div_remainder.read().bits() as i32; let quotient = sio.div_quotient.read().bits() as i32; DivResult { remainder, quotient, } }) } } /// Trait for all the spinlock. See the documentation of e.g. [`Spinlock0`] for more information pub trait Spinlock: typelevel::Sealed + Sized { /// Try to claim the spinlock. Will return `Some(Self)` if the lock is obtained, and `None` if the lock is /// already in use somewhere else. fn try_claim() -> Option; /// Claim the spinlock, will block the current thread until the lock is available. /// /// Note that calling this multiple times in a row will cause a deadlock fn claim() -> Self { loop { if let Some(result) = Self::try_claim() { break result; } } } /// Try to claim the spinlock. Will return `WouldBlock` until the spinlock is available. fn claim_async() -> nb::Result { Self::try_claim().ok_or(nb::Error::WouldBlock) } } macro_rules! impl_spinlock { ($($spinlock_name:ident => $register:ident,)*) => { $( /// Hardware based spinlock. /// /// You can claim this lock by calling either [`claim`], [`try_claim`] or [`claim_async`]. /// This will automatically lock ALL spinlocks of type ` #[doc = stringify!($spinlock_name)] /// `. /// /// When the obtained spinlock goes out of scope, it is automatically unlocked. /// /// **warning**: These spinlocks are not re-entrant, meaning that the following code will cause a deadlock: /// /// ```no_run /// use rp2040_hal::sio::{Spinlock0, Spinlock}; /// let lock_1 = Spinlock0::claim(); /// let lock_2 = Spinlock0::claim(); // deadlock here /// ``` /// /// [`claim`]: #method.claim /// [`try_claim`]: #method.try_claim /// [`claim_async`]: #method.claim_async pub struct $spinlock_name(core::marker::PhantomData<()>); impl Spinlock for $spinlock_name { fn try_claim() -> Option<$spinlock_name> { // Safety: We're only reading from this register let sio = unsafe { &*pac::SIO::ptr() }; let lock = sio.$register.read().bits(); if lock > 0 { Some(Self(core::marker::PhantomData)) } else { None } } } impl typelevel::Sealed for $spinlock_name {} impl Drop for $spinlock_name { fn drop(&mut self) { // Safety: At this point we should be the only one accessing this spinlock register // so writing to this address is fine let sio = unsafe { &*pac::SIO::ptr() }; // Write (any value): release the lock sio.$register.write(|b| unsafe { b.bits(1) }); } } )* } } impl_spinlock! { Spinlock0 => spinlock0, Spinlock1 => spinlock1, Spinlock2 => spinlock2, Spinlock3 => spinlock3, Spinlock4 => spinlock4, Spinlock5 => spinlock5, Spinlock6 => spinlock6, Spinlock7 => spinlock7, Spinlock8 => spinlock8, Spinlock9 => spinlock9, Spinlock10 => spinlock10, Spinlock11 => spinlock11, Spinlock12 => spinlock12, Spinlock13 => spinlock13, Spinlock14 => spinlock14, Spinlock15 => spinlock15, Spinlock16 => spinlock16, Spinlock17 => spinlock17, Spinlock18 => spinlock18, Spinlock19 => spinlock19, Spinlock20 => spinlock20, Spinlock21 => spinlock21, Spinlock22 => spinlock22, Spinlock23 => spinlock23, Spinlock24 => spinlock24, Spinlock25 => spinlock25, Spinlock26 => spinlock26, Spinlock27 => spinlock27, Spinlock28 => spinlock28, Spinlock29 => spinlock29, Spinlock30 => spinlock30, Spinlock31 => spinlock31, } /// Returns the current state of the spinlocks. Each index corresponds to the associated spinlock, e.g. if index `5` is set to `true`, it means that [`Spinlock5`] is currently locked. /// /// Note that spinlocks can be claimed or released at any point, so this function cannot guarantee the spinlock is actually available right after calling this function. This function is mainly intended for debugging. pub fn spinlock_state() -> [bool; 32] { // Safety: we're only reading from a register let sio = unsafe { &*pac::SIO::ptr() }; // A bitmap containing the state of all 32 spinlocks (1=locked). let register = sio.spinlock_st.read().bits(); let mut result = [false; 32]; #[allow(clippy::needless_range_loop)] for i in 0..32 { result[i] = (register & (1 << i)) > 0; } result }