//! # Pimoroni Servo2040 PWM Micro Servo Example //! //! Moves the micro servo on a Servo2040 board using the PWM peripheral. //! //! This will move in different positions the motor attached to GP0. #![no_std] #![no_main] // GPIO traits use embedded_hal::timer::CountDown; use embedded_hal::PwmPin; // Traits for converting integers to amounts of time use fugit::ExtU64; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use pimoroni_servo2040::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use pimoroni_servo2040::hal; /// Number of microseconds for the pwm signal period. const PERIOD_US: u32 = 20_000; /// Max resolution for the pwm signal. const TOP: u16 = u16::MAX; #[pimoroni_servo2040::entry] fn main() -> ! { let mut pac = pac::Peripherals::take().unwrap(); let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); let sio = hal::Sio::new(pac.SIO); let _clocks = hal::clocks::init_clocks_and_plls( pimoroni_servo2040::XOSC_CRYSTAL_FREQ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // Configure the Timer peripheral in count-down mode let timer = hal::Timer::new(pac.TIMER, &mut pac.RESETS); let mut count_down = timer.count_down(); let pins = pimoroni_servo2040::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS); const MIN_PULSE: u16 = 1000; const MID_PULSE: u16 = 1500; const MAX_PULSE: u16 = 2000; let mut pwm: hal::pwm::Slice<_, _> = pwm_slices.pwm0; // 50Hz desired frequency // Rp2040 clock = 125MHz // Top = 65_535, resolution for counter (maximum possible u16 value) // Wrap = Top+1 (number of possible values) // Phase correction multiplier = 2 if phase correction enabled, else 1 // Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency) // Divider = 125,000,000/(65_536 * 1 * 50) // Divider = 38.14639 // Divider int = 38 // Divider frac = 3 (3/16 = 0.1875, smallest frac greater than desired clock divider). pwm.set_div_int(38); pwm.set_div_frac(3); // If phase correction enabled, then values would be: // Divider = rp2040_clock / (Wrap * phase_correction_multiplier * desired_frequency) // Divider = 125,000,000/(65_536 * 2 * 50) // Divider = 19.073195 // Divider int = 19 // Divider frac = 2 (2/16 = .1250, smallest frac greater than desired clock divider). // pwm.set_ph_correct(); // pwm.set_div_int(19); // pwm.set_div_frac(2); pwm.set_top(TOP); pwm.enable(); // Output channel A on PWM0 to the GPIO0/servo1 pin let mut channel_a = pwm.channel_a; let _channel_a_pin = channel_a.output_to(pins.servo1); let movement_delay = 400.millis(); // Infinite loop, moving micro servo from one position to another. // You may need to adjust the pulse width since several servos from // different manufacturers respond differently. loop { // move to 0° channel_a.set_duty(us_to_duty(MID_PULSE)); count_down.start(movement_delay); let _ = nb::block!(count_down.wait()); // 0° to 90° channel_a.set_duty(us_to_duty(MAX_PULSE)); count_down.start(movement_delay); let _ = nb::block!(count_down.wait()); // 90° to 0° channel_a.set_duty(us_to_duty(MID_PULSE)); count_down.start(movement_delay); let _ = nb::block!(count_down.wait()); // 0° to -90° channel_a.set_duty(us_to_duty(MIN_PULSE)); count_down.start(movement_delay); let _ = nb::block!(count_down.wait()); } } /// Convert microseconds to duty value. /// /// This function uses the constants TOP and PERIOD_US defined at the top of the file. fn us_to_duty(us: u16) -> u16 { // Do math in u32 so we maintain higher precision. If we do math in u16, we need to divide first // and lose some precision when truncating the remainder. (TOP as u32 * us as u32 / PERIOD_US) as u16 }