//! # PWM Blink Example //! //! If you have an LED connected to pin 25, it will fade the LED using the PWM //! peripheral. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and licence details. #![no_std] #![no_main] // The macro for our start-up function use cortex_m_rt::entry; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // Some traits we need use embedded_hal::PwmPin; use embedded_time::rate::*; use rp2040_hal::clocks::Clock; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::pac; //// The linker will place this boot block at the start of our program image. We //// need this to help the ROM bootloader get our code up and running. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER; /// The minimum PWM value (i.e. LED brightness) we want const LOW: u16 = 0; /// The maximum PWM value (i.e. LED brightness) we want const HIGH: u16 = 25000; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then fades the LED in an /// infinite loop. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::sio::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer()); // Init PWMs let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS); // Configure PWM4 let pwm = &mut pwm_slices.pwm4; pwm.set_ph_correct(); pwm.enable(); // Output channel B on PWM4 to GPIO 25 let channel = &mut pwm.channel_b; channel.output_to(pins.gpio25); // Infinite loop, fading LED up and down loop { // Ramp brightness up for i in (LOW..=HIGH).skip(100) { delay.delay_us(8); channel.set_duty(i); } // Ramp brightness down for i in (LOW..=HIGH).rev().skip(100) { delay.delay_us(8); channel.set_duty(i); } delay.delay_ms(500); } } // End of file