//! # Seeeduino XIAO RP2040 Blinky Example //! //! Blinks the LED on a Seeeduino XIAO RP2040 16MB board. //! //! This will blink an LED attached to GPIO25, which is the pin the XIAO RP2040 //! uses for the on-board LED. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] // The macro for our start-up function use seeeduino_xiao_rp2040::entry; // GPIO traits use embedded_hal::digital::v2::OutputPin; use embedded_hal::PwmPin; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Pull in any important traits use seeeduino_xiao_rp2040::hal::prelude::*; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use seeeduino_xiao_rp2040::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use seeeduino_xiao_rp2040::hal; // The minimum PWM value (i.e. LED brightness) we want const LOW: u16 = 0; // The maximum PWM value (i.e. LED brightness) we want const HIGH: u16 = 60000; /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, then blinks the LED in an /// infinite loop. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); let core = pac::CorePeripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( seeeduino_xiao_rp2040::XOSC_CRYSTAL_FREQ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = seeeduino_xiao_rp2040::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // The delay object lets us wait for specified amounts of time (in // milliseconds) let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz()); // Init PWMs let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS); // Configure PWM4 let pwm = &mut pwm_slices.pwm0; pwm.set_ph_correct(); pwm.enable(); // Output channel B on PWM0 to the red LED pin, initially off let channel = &mut pwm.channel_b; channel.output_to(pins.led_red); channel.set_duty(u16::MAX); // Set the blue LED to be an output, initially off let mut led_blue_pin = pins.led_blue.into_push_pull_output(); led_blue_pin.set_high().unwrap(); // Turn off the green LED let mut led_green_pin = pins.led_green.into_push_pull_output(); led_green_pin.set_high().unwrap(); loop { // Blink blue LED at 1 Hz for _ in 0..5 { led_blue_pin.set_low().unwrap(); delay.delay_ms(500); led_blue_pin.set_high().unwrap(); delay.delay_ms(500); } // Ramp red LED brightness up for i in (LOW..=HIGH).skip(30) { delay.delay_us(100); channel.set_duty(u16::MAX - i); } // Ramp red LED brightness down for i in (LOW..=HIGH).rev().skip(30) { delay.delay_us(100); channel.set_duty(u16::MAX - i); } } } // End of file