//! # Pico I2C PIO Example //! //! Reads the temperature from an LM75B //! //! This read over I2C the temerature from an LM75B temperature sensor wired on pins 20 and 21 //! using the PIO peripheral as an I2C bus controller. //! The pins used for the I2C can be remapped to any other pin available to the PIO0 peripheral. //! //! See the `Cargo.toml` file for Copyright and licence details. #![no_std] #![no_main] // The trait used by formatting macros like write! and writeln! use core::fmt::Write as FmtWrite; // The macro for our start-up function use cortex_m_rt::entry; // I2C HAL traits & Types. use embedded_hal::blocking::i2c::{Operation, Read, Transactional, Write}; // Time handling traits use embedded_time::rate::*; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use panic_halt as _; // Pull in any important traits use rp_pico::hal::prelude::*; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use rp_pico::hal::pac; // A shorter alias for the Hardware Abstraction Layer, which provides // higher-level drivers. use rp_pico::hal; /// Prints the temperature received from the sensor fn print_temperature(serial: &mut impl FmtWrite, temp: [u8; 2]) { let temp_i16 = i16::from_be_bytes(temp) >> 5; let temp_f32 = f32::from(temp_i16) * 0.125; // Write formatted output but ignore any error. let _ = writeln!(serial, "Temperature: {:0.2}°C", temp_f32); } /// Entry point to our bare-metal application. /// /// The `#[entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables are initialised. /// /// The function configures the RP2040 peripherals, reads the temperature from /// the attached LM75B using PIO0. #[entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks // // The default is to generate a 125 MHz system clock let clocks = hal::clocks::init_clocks_and_plls( rp_pico::XOSC_CRYSTAL_FREQ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins up according to their function on this particular board let pins = rp_pico::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let uart_pins = ( // UART TX (characters sent from RP2040) on pin 1 (GPIO0) pins.gpio0.into_mode::(), // UART RX (characters reveived by RP2040) on pin 2 (GPIO1) pins.gpio1.into_mode::(), ); let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) .enable( hal::uart::common_configs::_115200_8_N_1, clocks.peripheral_clock.into(), ) .unwrap(); let (mut pio, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS); let mut i2c_pio = i2c_pio::I2C::new( &mut pio, pins.gpio20, pins.gpio21, sm0, 100_000.Hz(), clocks.system_clock.freq(), ); let mut temp = [0; 2]; i2c_pio .read(0x48u8, &mut temp) .expect("Failed to read from the peripheral"); print_temperature(&mut uart, temp); i2c_pio .write(0x48u8, &[0]) .expect("Failed to write to the peripheral"); let mut temp = [0; 2]; i2c_pio .read(0x48u8, &mut temp) .expect("Failed to read from the peripheral"); print_temperature(&mut uart, temp); let mut config = [0]; let mut thyst = [0; 2]; let mut tos = [0; 2]; let mut temp = [0; 2]; let mut operations = [ Operation::Write(&[1]), Operation::Read(&mut config), Operation::Write(&[2]), Operation::Read(&mut thyst), Operation::Write(&[3]), Operation::Read(&mut tos), Operation::Write(&[0]), Operation::Read(&mut temp), ]; i2c_pio .exec(0x48u8, &mut operations) .expect("Failed to run all operations"); print_temperature(&mut uart, temp); loop { cortex_m::asm::nop(); } } // End of file