//! This example toggles the GPIO25 pin, using a PIO program compiled via pio_proc::pio!(). //! //! If a LED is connected to that pin, like on a Pico board, the LED should blink. #![no_std] #![no_main] use hal::gpio::{FunctionPio0, Pin}; use hal::pac; use hal::pio::PIOExt; use hal::Sio; use panic_halt as _; use rp2040_hal as hal; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. #[rp2040_hal::entry] fn main() -> ! { let mut pac = pac::Peripherals::take().unwrap(); let sio = Sio::new(pac.SIO); let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); // configure LED pin for Pio0. let _led: Pin<_, FunctionPio0> = pins.gpio25.into_mode(); // PIN id for use inside of PIO let led_pin_id = 25; // Define some simple PIO program. let program = pio_proc::pio_asm!( ".wrap_target", "set pins, 1 [31]", "set pins, 0 [31]", ".wrap" ); // Initialize and start PIO let (mut pio, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS); let installed = pio.install(&program.program).unwrap(); let (int, frac) = (0, 0); // as slow as possible (0 is interpreted as 65536) let (mut sm, _, _) = rp2040_hal::pio::PIOBuilder::from_program(installed) .set_pins(led_pin_id, 1) .clock_divisor_fixed_point(int, frac) .build(sm0); // The GPIO pin needs to be configured as an output. sm.set_pindirs([(led_pin_id, hal::pio::PinDir::Output)]); sm.start(); // PIO runs in background, independently from CPU loop { cortex_m::asm::wfi(); } }