rp-hal-boards/boards/pico/examples/pico_usb_serial.rs
2021-09-27 17:30:50 +01:00

130 lines
3.9 KiB
Rust

//! # Pico USB Serial Example
//!
//! Creates a USB Serial device on a Pico board, with the USB driver running in
//! the main thread.
//!
//! This will create a USB Serial device echoing anything it receives. Incoming
//! ASCII characters are converted to upercase, so you can tell it is working
//! and not just local-echo!
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use pico::hal;
// USB Device support
use usb_device::{class_prelude::*, prelude::*};
// USB Communications Class Device support
use usbd_serial::SerialPort;
//// The linker will place this boot block at the start of our program image. We
//// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then echoes any characters
/// received over USB Serial.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// Our default is 12 MHz crystal input, 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
pico::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Set up the USB driver
let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new(
pac.USBCTRL_REGS,
pac.USBCTRL_DPRAM,
clocks.usb_clock,
true,
&mut pac.RESETS,
));
// Set up the USB Communications Class Device driver
let mut serial = SerialPort::new(&usb_bus);
// Create a USB device with a fake VID and PID
let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x16c0, 0x27dd))
.manufacturer("Fake company")
.product("Serial port")
.serial_number("TEST")
.device_class(2) // from: https://www.usb.org/defined-class-codes
.build();
let timer = hal::timer::Timer::new(pac.TIMER);
let mut said_hello = false;
loop {
// A welcome message at the beginning
if !said_hello && timer.get_counter() >= 2_000_000 {
said_hello = true;
let _ = serial.write(b"Hello, World!\r\n");
}
// Check for new data
if usb_dev.poll(&mut [&mut serial]) {
let mut buf = [0u8; 64];
match serial.read(&mut buf) {
Err(_e) => {
// Do nothing
}
Ok(0) => {
// Do nothing
}
Ok(count) => {
// Convert to upper case
buf.iter_mut().take(count).for_each(|b| {
b.make_ascii_uppercase();
});
// Send back to the host
let mut wr_ptr = &buf[..count];
while !wr_ptr.is_empty() {
let _ = serial.write(wr_ptr).map(|len| {
wr_ptr = &wr_ptr[len..];
});
}
}
}
}
}
}
// End of file