mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-15 14:40:37 +11:00
f8984a9eac
Implementing `impl From<SystemClock> for Hertz` is a footgun, as SystemClock is not Copy, so the automatic conversion consumes the owned clock. This is visible in the example i2c.rs: ``` let mut i2c = hal::I2C::i2c1( pac.I2C1, sda_pin, scl_pin, // Try `not_an_scl_pin` here 400.kHz(), &mut pac.RESETS, clocks.peripheral_clock, ); ``` If the user wants to use both `i2c0` and `i2c1` at the same time, copying from this example won't work: ``` error[E0382]: use of moved value: `clocks.peripheral_clock` --> rp2040-hal/examples/i2c.rs:106:9 | 97 | clocks.peripheral_clock, | ----------------------- value moved here ... 106 | clocks.peripheral_clock, | ^^^^^^^^^^^^^^^^^^^^^^^ value used here after move | = note: move occurs because `clocks.peripheral_clock` has type `PeripheralClock`, which does not implement the `Copy` trait ``` As getting the frequency from a clock doesn't really need ownership, changing it to `impl From<&SystemClock> for Hertz` is both more logical and provides better usability. This is, however, a breaking change: Code relying on this trait implementation needs to be changed by adding a `&`.
190 lines
5.6 KiB
Rust
190 lines
5.6 KiB
Rust
//! # 'ROM Functions' Example
|
|
//!
|
|
//! This application demonstrates how to call functions in the RP2040's boot ROM.
|
|
//!
|
|
//! It may need to be adapted to your particular board layout and/or pin assignment.
|
|
//!
|
|
//! See the `Cargo.toml` file for Copyright and license details.
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
// The macro for our start-up function
|
|
use cortex_m_rt::entry;
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
// be linked)
|
|
use panic_halt as _;
|
|
|
|
// Alias for our HAL crate
|
|
use rp2040_hal as hal;
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
// register access
|
|
use hal::pac;
|
|
|
|
// Some traits we need
|
|
use core::fmt::Write;
|
|
use hal::Clock;
|
|
|
|
/// The linker will place this boot block at the start of our program image. We
|
|
/// need this to help the ROM bootloader get our code up and running.
|
|
#[link_section = ".boot2"]
|
|
#[used]
|
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
|
|
|
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
|
/// if your board has a different frequency
|
|
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
|
|
|
/// Our Cortex-M systick goes from this value down to zero. For our timer maths
|
|
/// to work, this value must be of the form `2**N - 1`.
|
|
const SYSTICK_RELOAD: u32 = 0x00FF_FFFF;
|
|
|
|
/// Entry point to our bare-metal application.
|
|
///
|
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
|
/// as soon as all global variables are initialised.
|
|
///
|
|
/// The function configures the RP2040 peripherals, then writes to the UART in
|
|
/// an infinite loop.
|
|
#[entry]
|
|
fn main() -> ! {
|
|
// Grab our singleton objects
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
let mut core = pac::CorePeripherals::take().unwrap();
|
|
|
|
// Set up the watchdog driver - needed by the clock setup code
|
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
|
|
|
// Configure the clocks
|
|
let clocks = hal::clocks::init_clocks_and_plls(
|
|
XTAL_FREQ_HZ,
|
|
pac.XOSC,
|
|
pac.CLOCKS,
|
|
pac.PLL_SYS,
|
|
pac.PLL_USB,
|
|
&mut pac.RESETS,
|
|
&mut watchdog,
|
|
)
|
|
.ok()
|
|
.unwrap();
|
|
|
|
// The single-cycle I/O block controls our GPIO pins
|
|
let sio = hal::Sio::new(pac.SIO);
|
|
|
|
// Set the pins to their default state
|
|
let pins = hal::gpio::Pins::new(
|
|
pac.IO_BANK0,
|
|
pac.PADS_BANK0,
|
|
sio.gpio_bank0,
|
|
&mut pac.RESETS,
|
|
);
|
|
|
|
let uart_pins = (
|
|
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
|
|
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
|
|
// UART RX (characters received by RP2040) on pin 2 (GPIO1)
|
|
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
|
|
);
|
|
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
|
|
.enable(
|
|
hal::uart::common_configs::_9600_8_N_1,
|
|
clocks.peripheral_clock.freq(),
|
|
)
|
|
.unwrap();
|
|
|
|
writeln!(uart, "ROM Copyright: {}", hal::rom_data::copyright_string()).unwrap();
|
|
writeln!(
|
|
uart,
|
|
"ROM Git Revision: 0x{:x}",
|
|
hal::rom_data::git_revision()
|
|
)
|
|
.unwrap();
|
|
|
|
// Some ROM functions are exported directly, so we can just call them
|
|
writeln!(
|
|
uart,
|
|
"popcount32(0xF000_0001) = {}",
|
|
hal::rom_data::popcount32(0xF000_0001)
|
|
)
|
|
.unwrap();
|
|
|
|
// Try to hide the numbers from the compiler so it is forced to do the maths
|
|
let x = hal::rom_data::popcount32(0xFF) as f32; // 8
|
|
let y = hal::rom_data::popcount32(0xFFF) as f32; // 12
|
|
|
|
// Use systick as a count-down timer
|
|
core.SYST.set_reload(SYSTICK_RELOAD);
|
|
core.SYST.clear_current();
|
|
core.SYST.enable_counter();
|
|
|
|
// Do some simple sums
|
|
let start_soft = cortex_m::peripheral::SYST::get_current();
|
|
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
|
let soft_result = x * y;
|
|
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
|
let end_soft = cortex_m::peripheral::SYST::get_current();
|
|
|
|
writeln!(
|
|
uart,
|
|
"{} x {} = {} in {} systicks (doing soft-float maths)",
|
|
x,
|
|
y,
|
|
soft_result,
|
|
calc_delta(start_soft, end_soft)
|
|
)
|
|
.unwrap();
|
|
|
|
// Some functions require a look-up in a table. First we do the lookup and
|
|
// find the function pointer in ROM (you only want to do this once per
|
|
// function).
|
|
let fmul = hal::rom_data::float_funcs::fmul::ptr();
|
|
|
|
// Then we can call the function whenever we want
|
|
let start_rom = cortex_m::peripheral::SYST::get_current();
|
|
let rom_result = fmul(x, y);
|
|
let end_rom = cortex_m::peripheral::SYST::get_current();
|
|
|
|
writeln!(
|
|
uart,
|
|
"{} x {} = {} in {} systicks (using the ROM)",
|
|
x,
|
|
y,
|
|
rom_result,
|
|
calc_delta(start_rom, end_rom)
|
|
)
|
|
.unwrap();
|
|
|
|
// Now just spin (whilst the UART does its thing)
|
|
for _ in 0..1_000_000 {
|
|
cortex_m::asm::nop();
|
|
}
|
|
|
|
// Reboot back into USB mode (no activity, both interfaces enabled)
|
|
rp2040_hal::rom_data::reset_to_usb_boot(0, 0);
|
|
|
|
// In case the reboot fails
|
|
loop {
|
|
cortex_m::asm::nop();
|
|
}
|
|
}
|
|
|
|
/// Calculate the number of systicks elapsed between two counter readings.
|
|
///
|
|
/// Note: SYSTICK starts at `SYSTICK_RELOAD` and counts down towards zero, so
|
|
/// these comparisons might appear to be backwards.
|
|
///
|
|
/// ```
|
|
/// assert_eq!(1, calc_delta(SYSTICK_RELOAD, SYSTICK_RELOAD - 1));
|
|
/// assert_eq!(2, calc_delta(0, SYSTICK_RELOAD - 1));
|
|
/// ```
|
|
fn calc_delta(start: u32, end: u32) -> u32 {
|
|
if start < end {
|
|
(start.wrapping_sub(end)) & SYSTICK_RELOAD
|
|
} else {
|
|
start - end
|
|
}
|
|
}
|
|
|
|
// End of file
|