mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-15 14:40:37 +11:00
130 lines
3.7 KiB
Rust
130 lines
3.7 KiB
Rust
//! # SPI Example
|
|
//!
|
|
//! This application demonstrates how to use the SPI Driver to talk to a remote
|
|
//! SPI device.
|
|
//!
|
|
//!
|
|
//! It may need to be adapted to your particular board layout and/or pin
|
|
//! assignment.
|
|
//!
|
|
//! See the `Cargo.toml` file for Copyright and license details.
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
// The macro for our start-up function
|
|
use cortex_m_rt::entry;
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
// be linked)
|
|
use panic_halt as _;
|
|
|
|
// Alias for our HAL crate
|
|
use rp2040_hal as hal;
|
|
|
|
// Some traits we need
|
|
use cortex_m::prelude::*;
|
|
use embedded_time::rate::Extensions;
|
|
use rp2040_hal::clocks::Clock;
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
// register access
|
|
use hal::pac;
|
|
|
|
/// The linker will place this boot block at the start of our program image. We
|
|
/// need this to help the ROM bootloader get our code up and running.
|
|
#[link_section = ".boot2"]
|
|
#[used]
|
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
|
|
|
|
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
|
/// if your board has a different frequency
|
|
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
|
|
|
/// Entry point to our bare-metal application.
|
|
///
|
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
|
/// as soon as all global variables are initialised.
|
|
///
|
|
/// The function configures the RP2040 peripherals, then performs some example
|
|
/// SPI transactions, then goes to sleep.
|
|
#[entry]
|
|
fn main() -> ! {
|
|
// Grab our singleton objects
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
|
|
// Set up the watchdog driver - needed by the clock setup code
|
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
|
|
|
// Configure the clocks
|
|
let clocks = hal::clocks::init_clocks_and_plls(
|
|
XTAL_FREQ_HZ,
|
|
pac.XOSC,
|
|
pac.CLOCKS,
|
|
pac.PLL_SYS,
|
|
pac.PLL_USB,
|
|
&mut pac.RESETS,
|
|
&mut watchdog,
|
|
)
|
|
.ok()
|
|
.unwrap();
|
|
|
|
// The single-cycle I/O block controls our GPIO pins
|
|
let sio = hal::Sio::new(pac.SIO);
|
|
|
|
// Set the pins to their default state
|
|
let pins = hal::gpio::Pins::new(
|
|
pac.IO_BANK0,
|
|
pac.PADS_BANK0,
|
|
sio.gpio_bank0,
|
|
&mut pac.RESETS,
|
|
);
|
|
|
|
// These are implicitly used by the spi driver if they are in the correct mode
|
|
let _spi_sclk = pins.gpio6.into_mode::<hal::gpio::FunctionSpi>();
|
|
let _spi_mosi = pins.gpio7.into_mode::<hal::gpio::FunctionSpi>();
|
|
let _spi_miso = pins.gpio4.into_mode::<hal::gpio::FunctionSpi>();
|
|
let spi = hal::Spi::<_, _, 8>::new(pac.SPI0);
|
|
|
|
// Exchange the uninitialised SPI driver for an initialised one
|
|
let mut spi = spi.init(
|
|
&mut pac.RESETS,
|
|
clocks.peripheral_clock.freq(),
|
|
16_000_000u32.Hz(),
|
|
&embedded_hal::spi::MODE_0,
|
|
);
|
|
|
|
// Write out 0, ignore return value
|
|
if spi.write(&[0]).is_ok() {
|
|
// SPI write was succesful
|
|
};
|
|
|
|
// write 50, then check the return
|
|
let send_success = spi.send(50);
|
|
match send_success {
|
|
Ok(_) => {
|
|
// We succeeded, check the read value
|
|
if let Ok(_x) = spi.read() {
|
|
// We got back `x` in exchange for the 0x50 we sent.
|
|
};
|
|
}
|
|
Err(_) => todo!(),
|
|
}
|
|
|
|
// Do a read+write at the same time. Data in `buffer` will be replaced with
|
|
// the data read from the SPI device.
|
|
let mut buffer: [u8; 4] = [1, 2, 3, 4];
|
|
let transfer_success = spi.transfer(&mut buffer);
|
|
#[allow(clippy::single_match)]
|
|
match transfer_success {
|
|
Ok(_) => {} // Handle success
|
|
Err(_) => {} // handle errors
|
|
};
|
|
|
|
#[allow(clippy::empty_loop)]
|
|
loop {
|
|
// Empty loop
|
|
}
|
|
}
|
|
|
|
// End of file
|