mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-10 20:41:31 +11:00
132 lines
3.7 KiB
Rust
132 lines
3.7 KiB
Rust
//! # Seeeduino XIAO RP2040 Blinky Example
|
|
//!
|
|
//! Blinks the LED on a Seeeduino XIAO RP2040 16MB board.
|
|
//!
|
|
//! This will blink an LED attached to GPIO25, which is the pin the XIAO RP2040
|
|
//! uses for the on-board LED.
|
|
//!
|
|
//! See the `Cargo.toml` file for Copyright and license details.
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
// The macro for our start-up function
|
|
use seeeduino_xiao_rp2040::entry;
|
|
|
|
// GPIO traits
|
|
use embedded_hal::digital::v2::OutputPin;
|
|
use embedded_hal::PwmPin;
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
// be linked)
|
|
use panic_halt as _;
|
|
|
|
// Pull in any important traits
|
|
use seeeduino_xiao_rp2040::hal::prelude::*;
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
// register access
|
|
use seeeduino_xiao_rp2040::hal::pac;
|
|
|
|
// A shorter alias for the Hardware Abstraction Layer, which provides
|
|
// higher-level drivers.
|
|
use seeeduino_xiao_rp2040::hal;
|
|
|
|
// The minimum PWM value (i.e. LED brightness) we want
|
|
const LOW: u16 = 0;
|
|
|
|
// The maximum PWM value (i.e. LED brightness) we want
|
|
const HIGH: u16 = 60000;
|
|
|
|
/// Entry point to our bare-metal application.
|
|
///
|
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
|
/// as soon as all global variables are initialised.
|
|
///
|
|
/// The function configures the RP2040 peripherals, then blinks the LED in an
|
|
/// infinite loop.
|
|
#[entry]
|
|
fn main() -> ! {
|
|
// Grab our singleton objects
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
let core = pac::CorePeripherals::take().unwrap();
|
|
|
|
// Set up the watchdog driver - needed by the clock setup code
|
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
|
|
|
// Configure the clocks
|
|
//
|
|
// The default is to generate a 125 MHz system clock
|
|
let clocks = hal::clocks::init_clocks_and_plls(
|
|
seeeduino_xiao_rp2040::XOSC_CRYSTAL_FREQ,
|
|
pac.XOSC,
|
|
pac.CLOCKS,
|
|
pac.PLL_SYS,
|
|
pac.PLL_USB,
|
|
&mut pac.RESETS,
|
|
&mut watchdog,
|
|
)
|
|
.ok()
|
|
.unwrap();
|
|
|
|
// The single-cycle I/O block controls our GPIO pins
|
|
let sio = hal::Sio::new(pac.SIO);
|
|
|
|
// Set the pins up according to their function on this particular board
|
|
let pins = seeeduino_xiao_rp2040::Pins::new(
|
|
pac.IO_BANK0,
|
|
pac.PADS_BANK0,
|
|
sio.gpio_bank0,
|
|
&mut pac.RESETS,
|
|
);
|
|
|
|
// The delay object lets us wait for specified amounts of time (in
|
|
// milliseconds)
|
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
|
|
|
|
// Init PWMs
|
|
let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
|
|
|
|
// Configure PWM4
|
|
let pwm = &mut pwm_slices.pwm0;
|
|
pwm.set_ph_correct();
|
|
pwm.enable();
|
|
|
|
// Output channel B on PWM0 to the red LED pin, initially off
|
|
let channel = &mut pwm.channel_b;
|
|
channel.output_to(pins.led_red);
|
|
channel.set_duty(u16::MAX);
|
|
|
|
// Set the blue LED to be an output, initially off
|
|
let mut led_blue_pin = pins.led_blue.into_push_pull_output();
|
|
led_blue_pin.set_high().unwrap();
|
|
|
|
// Turn off the green LED
|
|
let mut led_green_pin = pins.led_green.into_push_pull_output();
|
|
led_green_pin.set_high().unwrap();
|
|
|
|
loop {
|
|
// Blink blue LED at 1 Hz
|
|
for _ in 0..5 {
|
|
led_blue_pin.set_low().unwrap();
|
|
delay.delay_ms(500);
|
|
led_blue_pin.set_high().unwrap();
|
|
delay.delay_ms(500);
|
|
}
|
|
|
|
// Ramp red LED brightness up
|
|
for i in (LOW..=HIGH).skip(30) {
|
|
delay.delay_us(100);
|
|
channel.set_duty(u16::MAX - i);
|
|
}
|
|
|
|
// Ramp red LED brightness down
|
|
for i in (LOW..=HIGH).rev().skip(30) {
|
|
delay.delay_us(100);
|
|
channel.set_duty(u16::MAX - i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of file
|