mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2024-12-24 13:11:30 +11:00
111 lines
3.2 KiB
Rust
111 lines
3.2 KiB
Rust
//! # UART Example
|
|
//!
|
|
//! This application demonstrates how to use the UART Driver to talk to a serial
|
|
//! connection.
|
|
//!
|
|
//! It may need to be adapted to your particular board layout and/or pin
|
|
//! assignment.
|
|
//!
|
|
//! See the `Cargo.toml` file for Copyright and license details.
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
// be linked)
|
|
use panic_halt as _;
|
|
|
|
// Alias for our HAL crate
|
|
use rp2040_hal as hal;
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
// register access
|
|
use hal::pac;
|
|
|
|
// Some traits we need
|
|
use core::fmt::Write;
|
|
use fugit::RateExtU32;
|
|
use rp2040_hal::clocks::Clock;
|
|
|
|
// UART related types
|
|
use hal::uart::{DataBits, StopBits, UartConfig};
|
|
|
|
/// The linker will place this boot block at the start of our program image. We
|
|
/// need this to help the ROM bootloader get our code up and running.
|
|
/// Note: This boot block is not necessary when using a rp-hal based BSP
|
|
/// as the BSPs already perform this step.
|
|
#[link_section = ".boot2"]
|
|
#[used]
|
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
|
|
|
|
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
|
/// if your board has a different frequency
|
|
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
|
|
|
/// Entry point to our bare-metal application.
|
|
///
|
|
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
|
|
/// as soon as all global variables and the spinlock are initialised.
|
|
///
|
|
/// The function configures the RP2040 peripherals, then writes to the UART in
|
|
/// an infinite loop.
|
|
#[rp2040_hal::entry]
|
|
fn main() -> ! {
|
|
// Grab our singleton objects
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
let core = pac::CorePeripherals::take().unwrap();
|
|
|
|
// Set up the watchdog driver - needed by the clock setup code
|
|
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
|
|
|
// Configure the clocks
|
|
let clocks = hal::clocks::init_clocks_and_plls(
|
|
XTAL_FREQ_HZ,
|
|
pac.XOSC,
|
|
pac.CLOCKS,
|
|
pac.PLL_SYS,
|
|
pac.PLL_USB,
|
|
&mut pac.RESETS,
|
|
&mut watchdog,
|
|
)
|
|
.ok()
|
|
.unwrap();
|
|
|
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
|
|
|
|
// The single-cycle I/O block controls our GPIO pins
|
|
let sio = hal::Sio::new(pac.SIO);
|
|
|
|
// Set the pins to their default state
|
|
let pins = hal::gpio::Pins::new(
|
|
pac.IO_BANK0,
|
|
pac.PADS_BANK0,
|
|
sio.gpio_bank0,
|
|
&mut pac.RESETS,
|
|
);
|
|
|
|
let uart_pins = (
|
|
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
|
|
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
|
|
// UART RX (characters received by RP2040) on pin 2 (GPIO1)
|
|
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
|
|
);
|
|
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
|
|
.enable(
|
|
UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One),
|
|
clocks.peripheral_clock.freq(),
|
|
)
|
|
.unwrap();
|
|
|
|
uart.write_full_blocking(b"UART example\r\n");
|
|
|
|
let mut value = 0u32;
|
|
loop {
|
|
writeln!(uart, "value: {:02}\r", value).unwrap();
|
|
delay.delay_ms(1000);
|
|
value += 1
|
|
}
|
|
}
|
|
|
|
// End of file
|