rp-hal-boards/rp2040-hal/examples/adc.rs
2022-04-30 12:51:45 +10:00

127 lines
3.8 KiB
Rust

//! # ADC Example
//!
//! This application demonstrates how to read ADC samples from the temperature
//! sensor and pin and output them to the UART on pins 1 and 2 at 9600 baud.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
//! See the `Cargo.toml` file for Copyright and license details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// Some traits we need
use core::fmt::Write;
use embedded_hal::adc::OneShot;
use embedded_time::fixed_point::FixedPoint;
use rp2040_hal::Clock;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then prints the temperature
/// in an infinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// UART TX (characters sent from pico) on pin 1 (GPIO0) and RX (on pin 2 (GPIO1)
let uart_pins = (
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
);
// Create a UART driver
let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
.enable(
hal::uart::common_configs::_9600_8_N_1,
clocks.peripheral_clock.into(),
)
.unwrap();
// Write to the UART
uart.write_full_blocking(b"ADC example\r\n");
// Enable ADC
let mut adc = hal::Adc::new(pac.ADC, &mut pac.RESETS);
// Enable the temperature sense channel
let mut temperature_sensor = adc.enable_temp_sensor();
// Configure GPIO26 as an ADC input
let mut adc_pin_0 = pins.gpio26.into_floating_input();
loop {
// Read the raw ADC counts from the temperature sensor channel.
let temp_sens_adc_counts: u16 = adc.read(&mut temperature_sensor).unwrap();
let pin_adc_counts: u16 = adc.read(&mut adc_pin_0).unwrap();
writeln!(
uart,
"ADC readings: Temperature: {:02} Pin: {:02}\r\n",
temp_sens_adc_counts, pin_adc_counts
)
.unwrap();
delay.delay_ms(1000);
}
}
// End of file