rp-hal-boards/rp2040-hal/src/uart.rs
9names 369ac5a23f
Add UART example + core::fmt support to UART (#73)
* Add standalone UART example
* Add UART example to docs in UART module
* Add core::fmt::write_str to UART module to allow easy use of format! macro in user code
2021-08-08 15:36:56 +10:00

512 lines
14 KiB
Rust

//! Universal Asynchronous Receiver Transmitter (UART)
//!
//! See [Chapter 4 Section 2](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details
//!
//! ## Usage
//!
//! See [examples/uart.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/uart.rs) for a more complete example
//! ```rust
//! // Need to perform clock init before using UART or it will freeze.
//! // Skipping it here for brevity
//! let uart = UartPeripheral::<_, _>::enable(
//! pac.UART0,
//! &mut pac.RESETS,
//! hal::uart::common_configs::_9600_8_N_1,
//! clocks.peripheral_clock.into(),
//! ).unwrap();
//!
//! // Set up UART on GP0 and GP1 (Pico pins 1 and 2)
//! let _tx_pin = pins.gpio0.into_mode::<gpio::FunctionUart>();
//! let _rx_pin = pins.gpio1.into_mode::<gpio::FunctionUart>();
//! uart.write_full_blocking(b"Hello World!\r\n");
//! ```
use core::convert::Infallible;
use core::fmt;
use core::ops::Deref;
use embedded_time::fixed_point::FixedPoint;
use embedded_time::rate::Baud;
use embedded_time::rate::Hertz;
use embedded_hal::serial::{Read, Write};
use nb::Error::{Other, WouldBlock};
use crate::pac::{
uart0::{uartlcr_h::W as UART_LCR_H_Writer, RegisterBlock},
UART0, UART1,
};
use crate::resets::SubsystemReset;
/// Error type for UART operations.
#[derive(Debug)]
pub enum Error {
/// Bad argument : when things overflow, ...
BadArgument,
}
/// When there's a read error.
pub struct ReadError<'err> {
/// The type of error
pub err_type: ReadErrorType,
/// Reference to the data that was read but eventually discared because of the error.
pub discared: &'err [u8],
}
/// Possible types of read errors. See Chapter 4, Section 2 §8 - Table 436: "UARTDR Register"
pub enum ReadErrorType {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
/// State of the UART Peripheral.
pub trait State {}
/// Trait to handle both underlying devices (UART0 & UART1)
pub trait UartDevice: Deref<Target = RegisterBlock> + SubsystemReset {}
impl UartDevice for UART0 {}
impl UartDevice for UART1 {}
/// UART is enabled.
pub struct Enabled;
/// UART is disabled.
pub struct Disabled;
impl State for Enabled {}
impl State for Disabled {}
/// Data bits
pub enum DataBits {
/// 5 bits
Five,
/// 6 bits
Six,
/// 7 bits
Seven,
/// 8 bits
Eight,
}
/// Stop bits
pub enum StopBits {
/// 1 bit
One,
/// 2 bits
Two,
}
/// Parity
/// The "none" state of parity is represented with the Option type (None).
pub enum Parity {
/// Odd parity
Odd,
/// Even parity
Even,
}
/// A struct holding the configuration for an UART device.
pub struct UartConfig {
baudrate: Baud,
data_bits: DataBits,
stop_bits: StopBits,
parity: Option<Parity>,
}
/// Common configurations for UART.
pub mod common_configs {
use super::{DataBits, StopBits, UartConfig};
use embedded_time::rate::Baud;
/// 9600 baud, 8 data bits, no parity, 1 stop bit
pub const _9600_8_N_1: UartConfig = UartConfig {
baudrate: Baud(9600),
data_bits: DataBits::Eight,
stop_bits: StopBits::One,
parity: None,
};
/// 19200 baud, 8 data bits, no parity, 1 stop bit
pub const _19200_8_N_1: UartConfig = UartConfig {
baudrate: Baud(19200),
data_bits: DataBits::Eight,
stop_bits: StopBits::One,
parity: None,
};
/// 38400 baud, 8 data bits, no parity, 1 stop bit
pub const _38400_8_N_1: UartConfig = UartConfig {
baudrate: Baud(38400),
data_bits: DataBits::Eight,
stop_bits: StopBits::One,
parity: None,
};
/// 57600 baud, 8 data bits, no parity, 1 stop bit
pub const _57600_8_N_1: UartConfig = UartConfig {
baudrate: Baud(57600),
data_bits: DataBits::Eight,
stop_bits: StopBits::One,
parity: None,
};
/// 115200 baud, 8 data bits, no parity, 1 stop bit
pub const _115200_8_N_1: UartConfig = UartConfig {
baudrate: Baud(115200),
data_bits: DataBits::Eight,
stop_bits: StopBits::One,
parity: None,
};
}
/// An UART Peripheral based on an underlying UART device.
pub struct UartPeripheral<S: State, D: UartDevice> {
device: D,
_state: S,
config: UartConfig,
effective_baudrate: Baud,
}
impl<S: State, D: UartDevice> UartPeripheral<S, D> {
fn transition<To: State>(self, state: To) -> UartPeripheral<To, D> {
UartPeripheral {
device: self.device,
config: self.config,
effective_baudrate: self.effective_baudrate,
_state: state,
}
}
/// Releases the underlying device.
pub fn free(self) -> D {
self.device
}
}
impl<D: UartDevice> UartPeripheral<Disabled, D> {
/// Enables the provided UART device with the given configuration.
pub fn enable(
mut device: D,
resets: &mut pac::RESETS,
config: UartConfig,
frequency: Hertz,
) -> Result<UartPeripheral<Enabled, D>, Error> {
device.reset_bring_up(resets);
let effective_baudrate = configure_baudrate(&mut device, &config.baudrate, &frequency)?;
// Enable the UART, both TX and RX
device.uartcr.write(|w| {
w.uarten().set_bit();
w.txe().set_bit();
w.rxe().set_bit();
w
});
device.uartlcr_h.write(|w| {
w.fen().set_bit();
set_format(w, &config.data_bits, &config.stop_bits, &config.parity);
w
});
device.uartdmacr.write(|w| {
w.txdmae().set_bit();
w.rxdmae().set_bit();
w
});
Ok(UartPeripheral {
device,
config,
effective_baudrate,
_state: Enabled,
})
}
}
impl<D: UartDevice> UartPeripheral<Enabled, D> {
/// Disable this UART Peripheral, falling back to the Disabled state.
pub fn disable(self) -> UartPeripheral<Disabled, D> {
// Disable the UART, both TX and RX
self.device.uartcr.write(|w| {
w.uarten().clear_bit();
w.txe().clear_bit();
w.rxe().clear_bit();
w
});
self.transition(Disabled)
}
pub(crate) fn transmit_flushed(&self) -> nb::Result<(), Infallible> {
if self.device.uartfr.read().txfe().bit_is_set() {
Ok(())
} else {
Err(WouldBlock)
}
}
fn uart_is_writable(&self) -> bool {
self.device.uartfr.read().txff().bit_is_clear()
}
fn uart_is_readable(&self) -> bool {
self.device.uartfr.read().rxfe().bit_is_clear()
}
/// Writes bytes to the UART.
/// This function writes as long as it can. As soon that the FIFO is full, if :
/// - 0 bytes were written, a WouldBlock Error is returned
/// - some bytes were written, it is deemed to be a success
/// Upon success, the remaining slice is returned.
pub fn write_raw<'d>(&self, data: &'d [u8]) -> nb::Result<&'d [u8], Infallible> {
let mut bytes_written = 0;
for c in data {
if !self.uart_is_writable() {
if bytes_written == 0 {
return Err(WouldBlock);
} else {
return Ok(&data[bytes_written..]);
}
}
self.device.uartdr.write(|w| unsafe {
w.data().bits(*c);
w
});
bytes_written += 1;
}
Ok(&data[bytes_written..])
}
/// Reads bytes from the UART.
/// This function reads as long as it can. As soon that the FIFO is empty, if :
/// - 0 bytes were read, a WouldBlock Error is returned
/// - some bytes were read, it is deemed to be a success
/// Upon success, the remaining slice is returned.
pub fn read_raw<'b>(&self, buffer: &'b mut [u8]) -> nb::Result<&'b mut [u8], ReadError<'b>> {
let mut bytes_read = 0;
Ok(loop {
if !self.uart_is_readable() {
if bytes_read == 0 {
return Err(WouldBlock);
} else {
break &mut buffer[bytes_read..];
}
}
if bytes_read < buffer.len() {
let mut error: Option<ReadErrorType> = None;
if self.device.uartdr.read().oe().bit_is_set() {
error = Some(ReadErrorType::Overrun);
}
if self.device.uartdr.read().be().bit_is_set() {
error = Some(ReadErrorType::Break);
}
if self.device.uartdr.read().pe().bit_is_set() {
error = Some(ReadErrorType::Parity);
}
if self.device.uartdr.read().fe().bit_is_set() {
error = Some(ReadErrorType::Framing);
}
if let Some(err_type) = error {
return Err(Other(ReadError {
err_type,
discared: buffer,
}));
}
buffer[bytes_read] = self.device.uartdr.read().data().bits();
bytes_read += 1;
} else {
break &mut buffer[bytes_read..];
}
})
}
/// Writes bytes to the UART.
/// This function blocks until the full buffer has been sent.
pub fn write_full_blocking(&self, data: &[u8]) {
let mut temp = data;
while !temp.is_empty() {
temp = match self.write_raw(temp) {
Ok(remaining) => remaining,
Err(WouldBlock) => continue,
Err(_) => unreachable!(),
}
}
}
/// Reads bytes from the UART.
/// This function blocks until the full buffer has been received.
pub fn read_full_blocking(&self, buffer: &mut [u8]) -> Result<(), ReadErrorType> {
let mut offset = 0;
while offset != buffer.len() {
offset += match self.read_raw(&mut buffer[offset..]) {
Ok(remaining) => remaining.len(),
Err(e) => match e {
Other(inner) => return Err(inner.err_type),
WouldBlock => continue,
},
}
}
Ok(())
}
}
/// The PL011 (PrimeCell UART) supports a fractional baud rate divider
/// From the wanted baudrate, we calculate the divider's two parts: integer and fractional parts.
/// Code inspired from the C SDK.
fn calculate_baudrate_dividers(
wanted_baudrate: &Baud,
frequency: &Hertz,
) -> Result<(u16, u16), Error> {
// See Chapter 4, Section 2 §7.1 from the datasheet for an explanation of how baudrate is
// calculated
let baudrate_div = frequency
.integer()
.checked_mul(8)
.and_then(|r| r.checked_div(wanted_baudrate.integer()))
.ok_or(Error::BadArgument)?;
Ok(match (baudrate_div >> 7, ((baudrate_div & 0x7F) + 1) / 2) {
(0, _) => (1, 0),
(int_part, _) if int_part >= 65535 => (65535, 0),
(int_part, frac_part) => (int_part as u16, frac_part as u16),
})
}
/// Baudrate configuration. Code loosely inspired from the C SDK.
fn configure_baudrate(
device: &mut dyn UartDevice,
wanted_baudrate: &Baud,
frequency: &Hertz,
) -> Result<Baud, Error> {
let (baud_div_int, baud_div_frac) = calculate_baudrate_dividers(wanted_baudrate, frequency)?;
// First we load the integer part of the divider.
device.uartibrd.write(|w| unsafe {
w.baud_divint().bits(baud_div_int as u16);
w
});
// Then we load the fractional part of the divider.
device.uartfbrd.write(|w| unsafe {
w.baud_divfrac().bits(baud_div_frac as u8);
w
});
// PL011 needs a (dummy) line control register write to latch in the
// divisors. We don't want to actually change LCR contents here.
device.uartlcr_h.modify(|_, w| w);
Ok(Baud(
(4 * frequency.integer()) / (64 * baud_div_int + baud_div_frac) as u32,
))
}
/// Format configuration. Code loosely inspired from the C SDK.
fn set_format<'w>(
w: &'w mut UART_LCR_H_Writer,
data_bits: &DataBits,
stop_bits: &StopBits,
parity: &Option<Parity>,
) -> &'w mut UART_LCR_H_Writer {
match parity {
Some(p) => {
w.pen().set_bit();
match p {
Parity::Odd => w.eps().clear_bit(),
Parity::Even => w.eps().set_bit(),
};
}
None => {
w.pen().bit(false);
}
};
unsafe {
w.wlen().bits(match data_bits {
DataBits::Five => 0b00,
DataBits::Six => 0b01,
DataBits::Seven => 0b10,
DataBits::Eight => 0b11,
})
};
match stop_bits {
StopBits::One => w.stp2().clear_bit(),
StopBits::Two => w.stp2().set_bit(),
};
w
}
impl<D: UartDevice> Read<u8> for UartPeripheral<Enabled, D> {
type Error = ReadErrorType;
fn read(&mut self) -> nb::Result<u8, Self::Error> {
let byte: &mut [u8] = &mut [0; 1];
match self.read_raw(byte) {
Ok(_) => Ok(byte[0]),
Err(e) => match e {
Other(inner) => Err(Other(inner.err_type)),
WouldBlock => Err(WouldBlock),
},
}
}
}
impl<D: UartDevice> Write<u8> for UartPeripheral<Enabled, D> {
type Error = Infallible;
fn write(&mut self, word: u8) -> nb::Result<(), Self::Error> {
if self.write_raw(&[word]).is_err() {
Err(WouldBlock)
} else {
Ok(())
}
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.transmit_flushed()
}
}
impl<D: UartDevice> fmt::Write for UartPeripheral<Enabled, D> {
fn write_str(&mut self, s: &str) -> fmt::Result {
s.bytes()
.try_for_each(|c| nb::block!(self.write(c)))
.map_err(|_| fmt::Error)
}
}