rp-hal-boards/boards/rp-pico/examples/pico_i2c_oled_display_ssd1306.rs
2022-08-24 22:46:34 +01:00

228 lines
6.7 KiB
Rust

//! # Raspberry Pi Pico (monochome) 128x64 OLED Display with SSD1306 Driver Example
//!
//! This example assumes you got an 128x64 OLED Display with an SSD1306 driver
//! connected to your Raspberry Pi Pico. The +3.3V voltage source of the
//! Raspberry Pi Pico will be used, and the output pins 21 and 22 of the board
//! (on the lower right).
//!
//! It will demonstrate how to get an I2C device and use it with the ssd1306 crate.
//! Additionally you can also see how to format a number into a string using
//! [core::fmt].
//!
//! The following diagram will show how things should be connected.
//! These displays usually can take 3.3V up to 5V.
//!
//! ```text
//! VCC SCL
//! /------------\ /----------\
//! | GND \ / SDA |
//! _|USB|_ | /-----\ | | /--------+--\
//! |1 R 40| | / __|__|__|__|___ | |
//! |2 P 39| | / | ____________ | | |
//! |3 38|- GND --+-/ | |Hello worl| | | |
//! |4 P 37| | | |Hello Rust| | | |
//! |5 I 36|-+3.3V -/ | |counter: 1| | | |
//! |6 C | | | | | | |
//! |7 O | | """""""""""" | | |
//! | | """"""""""""""" | |
//! | | (SSD1306 128x64 OLED Display) | |
//! ......... / /
//! | | / /
//! | 22|-GP17 I2C0 SCL---------------------/ /
//! |20 21|-GP16 I2C0 SDA-----------------------/
//! """""""
//! Symbols:
//! - (+) crossing lines, not connected
//! - (o) connected lines
//! ```
//!
//! See the `Cargo.toml` file for Copyright and license details.
#![no_std]
#![no_main]
// For string formatting.
use core::fmt::Write;
// The macro for our start-up function
use rp_pico::entry;
// Time handling traits:
use fugit::{ExtU32, RateExtU32};
// CountDown timer for the counter on the display:
use embedded_hal::timer::CountDown;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use rp_pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use rp_pico::hal;
// For in the graphics drawing utilities like the font
// and the drawing routines:
use embedded_graphics::{
mono_font::{ascii::FONT_9X18_BOLD, MonoTextStyleBuilder},
pixelcolor::BinaryColor,
prelude::*,
text::{Baseline, Text},
};
// The display driver:
use ssd1306::{prelude::*, Ssd1306};
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals,
/// gets a handle on the I2C peripheral,
/// initializes the SSD1306 driver, initializes the text builder
/// and then draws some text on the display.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// The default is to generate a 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
rp_pico::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = rp_pico::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// Configure two pins as being I²C, not GPIO
let sda_pin = pins.gpio16.into_mode::<hal::gpio::FunctionI2C>();
let scl_pin = pins.gpio17.into_mode::<hal::gpio::FunctionI2C>();
// Create the I²C driver, using the two pre-configured pins. This will fail
// at compile time if the pins are in the wrong mode, or if this I²C
// peripheral isn't available on these pins!
let i2c = hal::I2C::i2c0(
pac.I2C0,
sda_pin,
scl_pin,
400.kHz(),
&mut pac.RESETS,
&clocks.peripheral_clock,
);
// Create the I²C display interface:
let interface = ssd1306::I2CDisplayInterface::new(i2c);
// Create a driver instance and initialize:
let mut display = Ssd1306::new(interface, DisplaySize128x64, DisplayRotation::Rotate0)
.into_buffered_graphics_mode();
display.init().unwrap();
// Create a text style for drawing the font:
let text_style = MonoTextStyleBuilder::new()
.font(&FONT_9X18_BOLD)
.text_color(BinaryColor::On)
.build();
let timer = hal::Timer::new(pac.TIMER, &mut pac.RESETS);
let mut delay = timer.count_down();
let mut count = 0;
let mut buf = FmtBuf::new();
loop {
buf.reset();
// Format some text into a static buffer:
write!(&mut buf, "counter: {}", count).unwrap();
count += 1;
// Empty the display:
display.clear();
// Draw 3 lines of text:
Text::with_baseline("Hello world!", Point::zero(), text_style, Baseline::Top)
.draw(&mut display)
.unwrap();
Text::with_baseline("Hello Rust!", Point::new(0, 16), text_style, Baseline::Top)
.draw(&mut display)
.unwrap();
Text::with_baseline(buf.as_str(), Point::new(0, 32), text_style, Baseline::Top)
.draw(&mut display)
.unwrap();
display.flush().unwrap();
// Wait a bit:
delay.start(500.millis());
let _ = nb::block!(delay.wait());
}
}
/// This is a very simple buffer to pre format a short line of text
/// limited arbitrarily to 64 bytes.
struct FmtBuf {
buf: [u8; 64],
ptr: usize,
}
impl FmtBuf {
fn new() -> Self {
Self {
buf: [0; 64],
ptr: 0,
}
}
fn reset(&mut self) {
self.ptr = 0;
}
fn as_str(&self) -> &str {
core::str::from_utf8(&self.buf[0..self.ptr]).unwrap()
}
}
impl core::fmt::Write for FmtBuf {
fn write_str(&mut self, s: &str) -> core::fmt::Result {
let rest_len = self.buf.len() - self.ptr;
let len = if rest_len < s.len() {
rest_len
} else {
s.len()
};
self.buf[self.ptr..(self.ptr + len)].copy_from_slice(&s.as_bytes()[0..len]);
self.ptr += len;
Ok(())
}
}
// End of file